Français

150 kW Ultra High Power Laser Sensor Released

392
2024-12-27 14:30:51
Voir la traduction

Recently, MKS announced the launch of a brand new Ophir ® A 150 kW ultra-high power laser sensor designed specifically for measuring ultra-high power levels up to 150 kW. This sensor has excellent accuracy and reliability, suitable for industrial and defense fields.

This water-cooled calorimeter has a working wavelength range of 900-1100 nm and can measure power from 10 kW to 150 kW. Its extremely low reflectivity (<0.5%) ensures operational safety. The 150 kW sensor integrates a beam collector and measurement unit, designed to meet the growing demand for higher power in applications. Applications such as the development and testing of high-power fiber lasers, directional energy systems, and cutting and drilling in industrial production.

Ophir Photonics General Manager Reuven Silverman said, "Directed energy and industrial applications such as cutting are driving demand for higher power lasers, but so far there is no reliable solution for situations where power exceeds 120 kW. The Ophir 150 kW ultra-high power laser sensor takes high-power measurement to a new level. It provides accurate and reliable results for the research and production teams of high-power laser manufacturers and directed energy weapon developers. Whether integrated into third-party systems or used with easy-to-use Ophir software, this sensor is a powerful tool for ultra-high power laser measurements, providing reliability and operational efficiency.

The Ophir 150 kW ultra-high power sensor consists of two components: a beam collector for processing high-power laser absorption and heat dissipation, and a unit for measuring power levels. The measurement unit is equipped with an RS232 interface and an "intelligent connector" interface, which can be used in conjunction with MKS's Centauri, StarBright, StarLite, and other Ophir smart displays; Juno and Juno+compact USB PC interface; Juno RS, Pulsar, and Quasar virtual power and energy meters; And EA-1 Ethernet adapter.

The design of the 150 kW ultra-high power sensor fully considers flexibility. Cooling options include using tap water or deionized (DI) water. With a 200mm aperture, it is lightweight and measures 520x545x750mm in size. When not containing water, it weighs less than 60 kg.

Source: Yangtze River Delta Laser Alliance

Recommandations associées
  • Shanghai Optics and Fine Mechanics Institute has made progress in the new holographic imaging technology of frequency domain direct sampling

    Recently, a research team from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new holographic imaging technology using frequency domain direct sampling. The relevant results were published in Optics Letters under the title of "Fourier inspired single pixel holography".Digital holography is a tech...

    03-20
    Voir la traduction
  • Hyperspectral imaging technology: a comprehensive guide from principles to applications

    Hyperspectral imaging technology is a highly anticipated innovation in the field of science and engineering today. It not only integrates spectroscopy and imaging technology, but also has wide applications in various industries and research fields. This article will delve into the basic principles, working mechanisms, and applications of hyperspectral imaging in different fields.Introduction to hy...

    2024-04-16
    Voir la traduction
  • The INRS camera captures transient events and is suitable for various scenarios such as high-speed LiDAR systems for autonomous driving

    It is reported that the National Institutes of Sciences (INRS) of Canada has developed a camera platform that can achieve cheaper ultra fast imaging through the use of ready-made components, which can be used in various applications.This new device aims to address some of the limitations of current high-speed imaging, including parallax errors and potential damage from pulse illumination. Th...

    2023-10-07
    Voir la traduction
  • Korean POSTECH develops stretchable color adjustable photonic devices

    Liquid crystal elastomers are expected to be applied in displays, sensors, smart devices, and wearable devices.A team from POSTECH University in South Korea, led by Professor Su Seok Choi and Professor Seungmin Nam, has developed a new type of stretchable photonic device that can control the wavelength of light in various directions.This work was carried out by the Department of Electrical Enginee...

    2024-06-11
    Voir la traduction
  • Synchrotron X-ray imaging technology

    According to a recent study published in the journal Science Advances, it reveals how early mammals grew and developed during critical periods of their long 'life history'. A research team including Queen Mary University of London used synchrotron X-ray tomography technology to image the growth rings in fossilized tooth roots, in order to infer the lifespan, growth rate, and even sexual maturity t...

    2024-08-15
    Voir la traduction