Français

By 2030, the global market size of medical laser fiber will reach 1.369 billion US dollars

451
2023-10-27 13:57:12
Voir la traduction

According to a recent report by Congic Business Intelligence, the global medical laser fiber market is expected to grow significantly at a compound annual growth rate of 6.9% from 2023 to 2030. This growth is attributed to the increasing popularity of minimally invasive surgery worldwide.

The medical laser fiber market is expected to expand strongly, reaching $1.369 billion by 2030. The market is valued at $806 million in 2022 and is expected to grow at a compound annual growth rate of 6.9% between 2023 and 2030.

Fiber laser is one of the most important applications of fiber laser technology. Its versatility makes it highly effective in both surgery and diagnostic imaging, providing a high level of accuracy, precision, and safety. The main advantage of fiber lasers is their non-contact process, but their compactness, efficiency, and ease of use are important advantages in medical applications.

By type, medical laser fiber products can mainly be divided into thulium laser fiber, holmium laser fiber, and others. These products are mainly used in fields such as dermatology, obstetrics and gynecology, plastic surgery, urology, and intravenous therapy.

According to the type, in 2022, the reusable laser fiber segment contributed the largest market share in the medical laser fiber market. Although reusable optical fibers have higher initial costs, they have great potential for savings, and over time, costs will decrease. Therefore, the department generated significant revenue in 2022.

According to the product type, in 2022, the Thulium Laser Fiber Division contributed the largest market share in the medical laser fiber market due to better endoscopic vision, less stone recovery, and better stone clearance rate.

From an application perspective, in 2022, dermatology companies have the largest market share in the medical laser fiber market. This is due to the increasing use of plastic surgery and the increasing use of medical lasers in these treatments, which has driven the growth of segmented markets.

From a regional perspective, in 2022, North America has the largest market share in the global medical laser fiber market, reaching 39.50%. The development of the market in this region is mainly due to technological advancements in medical equipment and the rapid increase in ophthalmic surgeries such as cataracts - mainly cosmetic surgeries such as breast augmentation, liposuction, eyelid surgery, nose plastic surgery, abdominal plastic surgery, and facial peeling. These factors are driving the growing demand for medical laser fibers in the region.

According to research, companies such as Clarion Medical Technologies, Lumenis Be, and Cook are the main market participants in the latest market environment. These companies continuously utilize new technologies to develop more efficient and cost-effective innovative solutions. In addition, due to the increase in surgical procedures worldwide, it is expected that the global medical laser fiber market will achieve significant growth in the future. The characteristic of this market is fierce competition, with companies focusing on expanding their product supply and increasing their market share through mergers, acquisitions, and partnerships.

Source: OFweek

Recommandations associées
  • Accelerating electrons by emitting laser light into a nanophotonic cavity

    The laser driven particle accelerator on silicon chips was created by two independent research groups. With further improvements, this dielectric laser accelerator can be used in medicine and industry, and even in high-energy particle physics experiments.Accelerating electrons to high energy is usually accomplished over long distances in large and expensive facilities. For example, the electron ac...

    2023-10-28
    Voir la traduction
  • EV Group launches EVG 850 NanoClean system for ultra-thin chip stacking for advanced packaging

    EV Group, a leading supplier of wafer bonding and lithography equipment in the MEMS, nanotechnology, and semiconductor markets, yesterday launched the EVG850 NanoClean layer release system, which is the first product platform to adopt EVG's revolutionary NanoClean technology.The EVG850 NanoClean system combines infrared lasers with specially formulated inorganic release materials, and can ...

    2023-12-08
    Voir la traduction
  • Xi'an Institute of Optics and Fine Mechanics has made progress in the field of integrated microcavity optical frequency comb

    Recently, researcher Zhang Wenfu from the National Key Laboratory of Ultrafast Optical Science and Technology of Xi'an Institute of Optics and Mechanics, researcher Chen Wei from the academician team of Guo Guangcan from the Key Laboratory of Quantum Information of the Chinese Academy of Sciences of the University of Science and Technology of China, and professor Yang Jun from the School of Intell...

    02-19
    Voir la traduction
  • Scientists have successfully miniaturized erbium-based erbium lasers on silicon nitride photonic chips

    Scientists from the Federal Institute of Technology in Lausanne (EPFL) have successfully miniaturized a powerful erbium-based erbium laser on silicon nitride photonic chips. Due to the large volume and difficulty in shrinking of typical erbium-based fiber lasers, this breakthrough is expected to make significant progress in optical communication and sensing technology.Since the 1960s, lasers have ...

    2024-06-13
    Voir la traduction
  • A research team at City University of Hong Kong has developed a multispectral, ultra-low dose photoacoustic microscope system

    Optical resolution "photoacoustic microscope is a new biomedical imaging technology, which can be used in the research of cancer, diabetes, stroke and other diseases. However, insufficient sensitivity has always been a long-term obstacle to its wider application.According to Maims Consulting, a research team from City University of Hong Kong (CityU) has recently developed a multispectral, ultra-lo...

    2023-09-21
    Voir la traduction