Français

Research Progress: Extreme Ultraviolet Photolithography

519
2024-12-09 14:02:28
Voir la traduction

Recently, the semiconductor industry has adopted Extreme Ultraviolet Lithography (EUVL) technology. This cutting-edge photolithography technology is used for the continuous miniaturization of semiconductor devices to comply with Moore's Law. Extreme ultraviolet lithography (EUVL) has become a key technology that utilizes shorter wavelengths to achieve nanoscale feature sizes with higher accuracy and lower defect rates than previous lithography methods.

Recently, Dimitrios Kazazis, Yasin Ekinci, and others from the Paul Scherrer Institute in Switzerland published an article in Nature Reviews Methods Primers, comprehensively exploring the technological evolution from deep ultraviolet to extreme ultraviolet (EUV) lithography, with a focus on innovative methods for source technology, resist materials, and optical systems developed to meet the strict requirements of mass production.

Starting from the basic principles of photolithography, the main components and functions of extreme ultraviolet EUV scanners are described. It also covers exposure tools that support research and early development stages. Key themes such as image formation, photoresist platforms, and pattern transfer were explained, with a focus on improving resolution and yield. In addition, ongoing challenges such as random effects and resist sensitivity have been addressed, providing insights into the future development direction of extreme ultraviolet lithography EUVL, including high numerical aperture systems and novel resist platforms.

The article aims to provide a detailed review of the current extreme ultraviolet lithography EUVL capabilities and predict the future development and evolution of extreme ultraviolet lithography EUVL in semiconductor manufacturing.

 



Figure 1: Basic steps of photolithography process.



Figure 2: Extreme ultraviolet scanner and its main components.



Figure 3: Process window of photoresist.



Figure 4: Contrast curve of chemically amplified resist exposed to extreme ultraviolet light.



Figure 5: Typical faults in photolithography patterning of dense line/spacing patterns and contact hole arrays.



Figure 6: In 2025-2026, with the high numerical aperture, NA systems will enter mass production of high-volume manufacturing (HVM). In the next decade, lithography density scaling will continue to increase.



Figure 7: Chip yield curves plotted as a function of source power divided by dose for high numerical aperture NA and low numerical aperture NA extreme ultraviolet scanners.

Source: Yangtze River Delta Laser Alliance

Recommandations associées
  • A New Method for Controlling Light Polarization Using Liquid Crystal to Create Holograms

    Researchers have made significant breakthroughs in controlling optical polarization, which is a key characteristic of various applications such as augmented reality, data storage, and encryption.This new method was developed by a group of scientists using liquid crystals to create holograms, which can manipulate the polarization of light at different points. This represents a significant advanceme...

    2024-03-12
    Voir la traduction
  • Laser Photonics wins a large order from Lufthansa Technologies subsidiary

    Recently, American laser cleaning system developer Laser Photonics announced that the company has successfully secured an order for a cleaning technology laser cleaning system from Lufthansa Technik Puerto Rico, a technology subsidiary of Lufthansa, the largest aviation group in Europe.Lufthansa Technik is the world's largest independent provider dedicated to providing maintenance, repair, and com...

    2023-12-19
    Voir la traduction
  • In depth understanding of the formation of condensation rings in laser spot welding - machine learning and molecular dynamics simulation

    Researchers from the Pacific Northwest National Laboratory and Johns Hopkins University have reported that machine learning and molecular dynamics simulations can help to gain a deeper understanding of the formation of condensation rings in laser spot welding. The related paper titled 'Machine learning and molecular dynamics simulations aided insights into conditioned ring formation in laser spot ...

    2024-12-21
    Voir la traduction
  • Application of Multipurpose Femtosecond Laser Interferometry in High Precision Silicon Nanostructures

    Researchers from the Laser Processing Group of the IO-CSIC Institute of Optics in Spain report on the application of multi-purpose femtosecond laser interference in high-precision silicon nanostructures. The related research was published in Optics&Laser Technology with the title "Versatile femtosecond laser interference pattern applied to high precision nanostructured of silicon".Highlights:...

    2024-07-10
    Voir la traduction
  • Coherent Unifies Ultrafast Laser Business at the Glasgow Center of Excellence

    Recently, Coherent, an American laser system solution provider, announced that all of the company's ultra fast laser business, including the manufacturing of all picosecond and femtosecond lasers, will be unified in one place: the Ultra Fast Center of Excellence in Glasgow, Scotland.Previously, Coherent's Ultra Fast Center of Excellence located in Glasgow was already a state-of-the-art mass produc...

    2023-09-22
    Voir la traduction