Français

The Role of Active Tunable Laser in GeSn Nanomechanical Oscillator in Nat Nanotechnology

672
2024-05-14 14:31:16
Voir la traduction

It is reported that researchers from Nanyang Technological University in Singapore, Federal Institute of Technology Lausanne in Switzerland, Physics Laboratory of Higher Normal University in Paris, National Center for Scientific Research in France, Sorbonne University, City University of Paris, University of Leeds in the UK, and Korean Academy of Science and Technology (KAIST) have reported on the active tunable laser effect in GeSn nanomechanical oscillators. The study was published in Nature Nanotechnology under the title "Actively tunable laser action in GeSn nanomechanical catalysts".

The mechanical force caused by high-speed oscillation provides a good method for dynamically changing the basic characteristics of materials such as refractive index, absorption coefficient, and gain dynamics. Although precise control of mechanical oscillations has been well developed in the past few decades, the concept of dynamic mechanical forces has not yet been used to develop tunable lasers. In the article, researchers demonstrated the active tunable mid infrared laser effect of a compact class IV nanomechanical oscillator. The GeSn cantilever nanobeam suspended on a silicon substrate is driven by radio frequency wave resonance. Electrically controlled mechanical oscillation can induce periodic elastic strain in GeSn nanobeams over time, thereby achieving greater than 2 μ Active tunable laser emission with m wavelength. This study proposes a wide range mid infrared tunable laser with ultra-low tuning power consumption by utilizing mechanical resonance in radio frequency as the driving mechanism.

Figure 1: Design of a GeSn nanomechanical oscillator with actively tunable laser action.

Figure 2: Experimental setup.

Figure 3: Mechanical characterization and simulation.

Figure 4: Characterization of GeSn material.

Figure 5: Laser emission characteristics of the driving oscillator.

Figure 6: Production process.

Source: Yangtze River Delta Laser Alliance

Recommandations associées
  • Underwater laser cutting has been achieved with several advantages over common technologies such as saws, automatic wire saws and plasma cutting machines

    Due to the growing demand for renewable energy, the need for modern technologies to dismantle existing underwater infrastructure is also growing.For example, in order to boost the power of an offshore wind farm to a higher level, the existing old steel frame, which may be below sea level, must first be removed so that engineers can rebuild the steel frame for higher power.In laboratory tests, rese...

    2023-09-13
    Voir la traduction
  • HP100A-50KW-GD laser power detector for measuring extremely high power laser beams

    The HP100A-50KW-GD laser power detector is mainly designed for manufacturers of high-power lasers and laser systems, factories that use high-power lasers to cut thick metal parts, and military applications.The HP100A-50KW-GD adopts a gold reflector cone and a reduced back reflection geometry, which can capture 97% of incident light and process up to 50 kW of continuous laser power. The back reflec...

    2024-01-16
    Voir la traduction
  • Successful First Satellite Earth Laser High Speed Image Transmission Experiment

    Recently, the reporter learned from Changguang Satellite Technology Co., Ltd. (hereinafter referred to as "Changguang Satellite") that the company used a self-developed vehicle mounted laser communication ground station to conduct satellite ground laser high-speed image transmission experiments with the onboard laser communication terminal of the "Jilin No.1" constellation MF02A04 satellite and ac...

    2023-10-14
    Voir la traduction
  • Due to breakthroughs in microchip photonics, microwave signals have now become very accurate

    Zhao Yun/Columbia Engineering Company provided an advanced schematic of a photonic integrated chip, which aims to convert high-frequency signals into low-frequency signals using all optical frequency division.Scientists have built a small all optical device with the lowest microwave noise ever recorded on integrated chips.In order to improve the performance of electronic devices used for global n...

    2024-04-01
    Voir la traduction
  • HSG Laser launches new generation laser solutions

    HSG Laser unveiled its next-generation laser cutting solutions—the GH V2.0 high-power flatbed system and TS2 intelligent tube cutting machine—at its Düsseldorf showroom, marking a major milestone in its European market expansion. (Image: HSG Laser)Attended by customers and partners from across the continent, the event featured live demonstrations of both systems and highlighted HSG’s growing i...

    06-27
    Voir la traduction