Français

Hyperspectral imaging technology: a comprehensive guide from principles to applications

732
2024-04-16 17:35:15
Voir la traduction

Hyperspectral imaging technology is a highly anticipated innovation in the field of science and engineering today. It not only integrates spectroscopy and imaging technology, but also has wide applications in various industries and research fields. This article will delve into the basic principles, working mechanisms, and applications of hyperspectral imaging in different fields.

Introduction to hyperspectral imaging
Hyperspectral imaging is a technique that utilizes spectral information to obtain the spectrum of each pixel in an image. Compared to traditional imaging systems, hyperspectral imaging can provide more detailed information on object and surface features. By analyzing the unique spectral characteristics of objects and materials, it is possible to identify and quantify them.

Spectral imaging systems can capture electromagnetic spectra ranging from visible light to infrared, providing rich spectral data. This technology is widely used in fields such as food quality and safety, waste classification and recycling, and drug production control.

2. Working principle
Hyperspectral imaging utilizes an imaging spectrometer (also known as a hyperspectral camera) to collect light from a scene and decompose it into various wavelengths or spectral bands. Through this method, a two-dimensional image of the scene can be obtained and the spectral information of each pixel can be recorded. In the final hyperspectral image, each pixel corresponds to a unique spectrum, similar to a fingerprint.

This unique spectrum can be used to identify and quantify objects and materials in the scene. Due to the different reactions of different materials to light, their spectral characteristics are also different. Therefore, object recognition and classification can be achieved through spectra.

3. Information provided
The hyperspectral imaging system provides rich spatial and spectral information, which can be used to solve the problems of "what" and "where". Spectral information allows for recognition and classification of objects, while spatial information provides data on object distribution and regional separation.

Compared to traditional RGB cameras, hyperspectral imaging can provide more detailed and rich information. By analyzing thousands or even hundreds of thousands of spectra, large-scale hyperspectral data cubes containing position, wavelength, and time related information can be obtained, enabling detailed characterization of objects.

4. Application field
Hyperspectral imaging technology has a wide range of applications in various fields:
-Environmental monitoring: used to monitor land use, vegetation health, and water quality changes, as well as detect early signs of ecological degradation.
-Mineral exploration: used to create mineral deposit maps, detect mineral composition and grade.
-Quality control: can be used for non-destructive testing and grading of food, as well as detection of pollutants and defects in industrial products.
-Waste management: can be used to separate various materials and increase the value of recycled materials.
-Agriculture: used to evaluate crop health and yield, monitor soil moisture and nutrient content.
-Military surveillance: used to detect and identify hazardous materials.

epilogue
Hyperspectral imaging technology, as a powerful tool, plays an important role in scientific research, industrial production, and environmental monitoring. With the continuous advancement of technology and the expansion of application scenarios, it is believed that hyperspectral imaging will play an increasingly important role in the future and make greater contributions to the development of human society.

Source: Sohu

Recommandations associées
  • Progress in Research on Intervalley Scattering and Rabi Oscillation Driven by Coherent Phonons

    Two dimensional transition metal chalcogenides have multi valley structures in their energy bands, giving them electron valley degrees of freedom, making them an ideal platform for studying multi body interactions. As the main mechanism of valley depolarization, the valley scattering process of free electrons or bound excitons is crucial for exploring excited state electron phonon interactions and...

    2023-10-10
    Voir la traduction
  • Launching the world's strongest laser at a cost of 320 million euros

    Beijing, April 1st (Reporter Liu Xia) - The world's most powerful laser has been activated recently. On March 31st, the Physicist Organization Network reported that the system can enable laser pulses to reach a peak of 10 terawatts (1 terawatt=100 terawatts=1015 watts) within 1 femtosecond (1000 trillions of a second), which is expected to promote revolutionary progress in multiple fi...

    2024-04-03
    Voir la traduction
  • Shanghai Optical Machinery Institute has made progress in laser assisted connection of metal carbon fiber composite heterojunction materials

    Recently, the research team of Yang Shanglu from the Laser Intelligent Manufacturing Technology R&D Center of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made new progress in the laser assisted connection of metal carbon fiber composite heterostructure joints.The team used an adjustable flat top rectangular semiconductor laser as a heat source to achieve...

    2023-09-01
    Voir la traduction
  • IPG Photonics announces 2024 financial loss of $162 million

    On February 11th, global industrial fiber laser giant IPG Photonics announced its financial performance for the fourth quarter and full year of 2024. Annual sales have fallen below the $1 billion mark for the first time, with a year-on-year decline of 24% and a pre tax loss of up to $162 million. As an industry leader, IPG's financial report not only reflects the deep adjustment faced by the ind...

    02-13
    Voir la traduction
  • The researchers expect the EUV lithography market to grow from $9.4 billion in 2023 to $25.3 billion in 2028

    The researchers estimate the period from 2023 to 2028. EUV lithography will address the limitations of traditional optical lithography, which has reached its physical limits in terms of resolution. The shorter wavelength of EUV light allows for the creation of smaller features and tighter patterns on silicon wafers, enabling the manufacture of advanced microchips with greater transistor densities....

    2023-08-04
    Voir la traduction