Français

Scientists have conducted a series of studies on the mechanical properties and flame retardancy of laser formed Ti40 flame-retardant titanium alloy

1084
2023-08-15 15:25:44
Voir la traduction

Recently, Professor Huang Chunping's team from Nanchang University of Aeronautics and Astronautics conducted a series of studies on the mechanical and flame retardant properties of laser formed Ti40 flame retardant titanium alloy. The research team used typical Ti40 flame-retardant titanium alloy as the research object and prepared Ti40 flame-retardant titanium alloy using LSF technology. The microstructure, mechanical properties, and flame retardancy of laser formed specimens and traditional forged specimens were studied. 

At the same time, the superior flame retardancy and mechanical properties of laser formed specimens compared to traditional forged specimens were studied and discussed. The relevant research results are published in the Journal of Manufacturing Processes under the title of "Achieving superior burn resistance and mechanical properties of Ti40 alloy by laser solid forming". The author of the paper is Huang Qimin, a master's student, and the corresponding authors are Dr. Liu Fenggang and Professor Huang Chunping.

Ti40 (Ti-15V-25Cr) flame-retardant titanium alloy is a new type of highly stable β Titanium alloy has excellent comprehensive mechanical properties and flame retardancy, and is widely used in high bypass ratio large engine fan compressor components and other structures. However, its high temperature plasticity and flowability are poor, resulting in high processing costs, long cycles, and low material utilization in traditional mechanical processing. 

Therefore, there is an urgent need to find a new manufacturing technology to improve these issues. With the development of additive manufacturing technology, laser solid forming (LSF) technology based on laser cladding and rapid prototyping has also been widely applied. It can directly manufacture parts from CAD models and repair damaged parts, bringing new ideas and methods for the processing and manufacturing of flame retardant titanium alloys.

Based on the above research, the LSF process has improved the problems of high processing cost, long cycle time, and low material utilization brought about by traditional mechanical processing of Ti40. Ti40 alloy prepared by laser stereoforming technology has better mechanical properties compared to forged parts. At the same time, due to the special tempering effect during the laser stereoforming process, the Ti40 alloy β The precipitation of Ti5Si3 with high melting point can not only improve the oxidation efficiency of V and Cr elements by retaining pores, but also slow down the peeling of the oxide layer by strengthening the bonding between the matrix and the oxide layer, improving the flame retardancy of Ti40. The study of the mechanical properties and flame retardancy of Ti40 alloy prepared by LSF technology provides a new technical means for achieving high-performance, fast, and low-cost preparation of complex structural components of flame retardant titanium alloy.

Source: Laser Manufacturing Network

Recommandations associées
  • Shanghai University of Technology publishes the latest Nature paper

    With the increasing demand for human data, the requirements for data storage methods are also increasing. Optical Data Storage (ODS) is a light based storage method commonly used in DVDs, which is low-cost and very durable. But ODS usually stores data in a single layer, and the amount of data that can be stored is limited. Gu Min, academician of Shanghai University of Technology, Wen Jing, and Rua...

    2024-02-26
    Voir la traduction
  • Micro ring resonators with enormous potential: hybrid devices significantly improve laser technology

    The team from the Photonic Systems Laboratory at the Federal Institute of Technology in Lausanne has developed a chip level laser source that can improve the performance of semiconductor lasers while generating shorter wavelengths.This groundbreaking work, led by Professor Camille Br è s and postdoctoral researcher Marco Clementi from the Federal Institute of Technology in Lausanne, represe...

    2023-12-11
    Voir la traduction
  • Automated methods for background estimation in laser spectroscopy

    A new automated method for spectral background estimation in laser spectroscopy ensures the accuracy of quantitative analysis with minimal human intervention.When using laser-induced breakdown spectroscopy in spectral analysis, scientists may encounter various obstacles. The most common challenge faced by scientists when conducting elemental analysis is to optimize the interaction between the lase...

    2023-11-24
    Voir la traduction
  • TRUMPF helps upgrade the automation of 3D laser processing for automotive thermoforming

    (Dechengen, Germany, March 24, 2025) - TRUMPF Group in Germany has now provided end customers with a fully automated one-stop solution for laser processing systems. With this solution, customers can not only shorten the production cycle, but also effectively reduce the cost of 3D laser material processing. Our laser equipment has excellent production efficiency. Now, through the automation upgrade...

    04-02
    Voir la traduction
  • French laser giant's profits decline, laser radar business restructuring

    Recently, Marvel Fusion, a pioneer in the field of laser fusion, successfully raised 62.8 million euros (approximately 70.3 million US dollars) in funding. This funding will provide strong impetus for its fusion technology demonstration on existing laser equipment and accelerate the comprehensive technology validation process at its facility in Colorado, with the goal of achieving this milestone b...

    2024-10-09
    Voir la traduction