Français

French laser giant's profits decline, laser radar business restructuring

455
2024-10-09 13:54:03
Voir la traduction

Recently, Marvel Fusion, a pioneer in the field of laser fusion, successfully raised 62.8 million euros (approximately 70.3 million US dollars) in funding. This funding will provide strong impetus for its fusion technology demonstration on existing laser equipment and accelerate the comprehensive technology validation process at its facility in Colorado, with the goal of achieving this milestone by 2027.

 



This financing is led by HV Capital and has received support from several well-known investment institutions, including b2venture, Bayern Kapital, Deutsche Telekom, Earlybird, SPRIND, and Tengelmann Ventures. Of particular note is that Marvel Fusion has also been favored by the European Innovation Council, with a grant of 2.5 million euros and the prospect of receiving an additional equity investment of up to 15 million euros (pending approval), undoubtedly adding a significant amount to the company's financing journey.

In addition, Marvel Fusion is honored to have been selected for the accelerator program jointly launched by the European Innovation Council and the Small and Medium Enterprise Executive Agency, which aims to support the expansion of its fuel target production scale through a grant of 2.5 million euros and may introduce up to 15 million euros in equity investment as further assistance.

As one of the explorers in the field of inertial confinement fusion, Marvel Fusion's approach aligns with the advanced technology path of the US Department of Energy's National Ignition Facility (NIF), which has validated the net energy gain of laser nuclear fusion in 2022, setting an important milestone for the entire industry. However, Marvel Fusion, with its cutting-edge laser technology, is committed to improving the power and efficiency of lasers, surpassing the limitations of NIF based on old designs.

The company is partnering with Colorado State University to rapidly build a demonstration plant, with the core goal of validating its fusion technology competitiveness through two 100 joule laser systems. These lasers will accurately bombard nanostructured targets at ultra-high speeds (one billionth of a second per second), releasing high-energy positive ions through photon stripping, and triggering fusion reactions.

The hybrid fuel strategy chosen by Marvel Fusion (mainly composed of hydrogen and boron) demonstrates its flexibility and foresight in fuel selection. Moritz von der Linden emphasized that this strategy facilitates adjusting fuel combinations according to future technological developments.

Compared to the complex fuel particle preparation process of NIF (which requires gold lining wrapping and takes two weeks), Marvel Fusion's fuel and target design are more suitable for large-scale production. Its fuel remains solid at room temperature, easy to handle, and the target structure uses silicon material, greatly simplifying the production process and cost.

Even more exciting is that Marvel Fusion is able to efficiently produce nanoscale targets on standard 300mm wafers using mature semiconductor lithography technology, with each wafer capable of producing approximately 5000 targets and sizes controlled between 50 and 80 nanometers. This innovation not only reduces production costs, but also accelerates the pace of technology towards commercialization.

Looking ahead, the first prototype of Marvel Fusion is expected to be released between 2032 and 2033. The prototype will integrate hundreds of kilojoule level lasers, each capable of emitting about 10 times per second, marking another major breakthrough for the company in the field of laser fusion.

Source: OFweek

Recommandations associées
  • Shanghai Optical Machinery Institute has made progress in high-efficiency optical parametric amplification technology

    Recently, a joint research team composed of Sun Meizhi, associate researcher of the High Power Laser Physics Joint Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, and Tu Xiaoniu, associate researcher of the Chinese Academy of Sciences Shanghai Institute of Silicate, proposed a new configuration of cross Fabry Perot intracavity optical parametric ...

    2024-07-11
    Voir la traduction
  • The wide application of laser plastic welding technology in the field of automobile manufacturing

    With the rapid development of society, people's demands for energy conservation, emission reduction, and safety in automobiles are increasing. Automobile manufacturers are seeking lightweight manufacturing processes for automobiles, changing traditional component packaging processes, and so on. Laser plastic welding technology has emerged, and below is a brief sharing of the application of plastic...

    2024-09-26
    Voir la traduction
  • Meltio launches a new blue laser 3D printer M600

    Recently, metal 3D printing manufacturer Meltio launched its latest metal 3D printer - M600. This M600 has shown significant progress in integrating into industrial manufacturing processes, no longer limited to niche applications. Like most of Meltio's product lines, the design of M600 was originally intended to address common manufacturing issues such as long delivery times, high inventory cost...

    2024-07-06
    Voir la traduction
  • The Science Island team has made new progress in detecting atmospheric formaldehyde

    Recently, Zhang Weijun, a research team of the Anguang Institute of the Chinese Academy of Sciences, Hefei Academy of Materials, made new progress in atmospheric formaldehyde detection, and the related achievements were published on the international TOP journal Sensors and Actors: B. Chemical under the title of "Portable highly sensitive laser absorption spectrum formaldehyde sensor based on comp...

    2023-09-21
    Voir la traduction
  • Marvin Panaco launches the Mastersizer 3000 for laser diffraction particle size determination+

    Marvin Panaco, a subsidiary of Spectris plc located in Egham, Surrey, UK, announced the launch of its new laser diffraction particle size measurement instrument Mastersizer 3000+. Mastersizer 3000+utilizes integrated artificial intelligence and data science driven software solutions, providing method development support, data quality feedback, instrument monitoring, and troubleshooting recommendat...

    2024-03-22
    Voir la traduction