Français

Progress in research on intrinsic flexible and stretchable optoelectronic devices in the Institute of Chemistry

834
2024-04-09 15:58:58
Voir la traduction

Organic polymer semiconductor materials, due to their unique molecular structure and weak van der Waals interactions, are endowed with the characteristics of soluble processing and easy flexibility, and have potential applications in portable and implantable medical monitoring devices. A highly flexible, skin conformal, and excellent spatial resolution X-ray detector is expected to be integrated with curved objects and moving entity systems to achieve intrinsic flexibility and high sensitivity in skin like X-ray detectors.

However, the stability and image resolution of X-ray detectors based on organic polymer semiconductor materials under irradiation are poor, which limits the application of such devices. Liu Yunqi, an academician of the CAS Member, and Guo Yunlong, a researcher in the Key Laboratory of the Institute of Mechanical and Solid State of the Chemical Research Institute, have made a series of progress in high-performance intrinsically stretchable organic optoelectronic materials and devices.

Recently, in response to the reported issues of high operating voltage, poor stability, and low integration of stretchable organic optoelectronic devices, the team has proposed a new strategy of using removable interfaces to assist in the preparation of high-density intrinsic stretchable organic transistor arrays. This strategy introduces a lithium fluoride sacrificial layer on patterned photoresist to construct a detachable interface, achieving scalable integration of high-resolution intrinsic stretchable electrodes. The short channel stretchable organic transistor prepared in this study has low operating voltage, high optoelectronic performance, and excellent stability. The stretchable image sensor based on this short channel transistor exhibits a resolution of up to 10 lp mm-1 and achieves images of millions of pixels. This strategy provides a simple and universal optoelectronic integration platform. The relevant results were published in Nature Communications.

In addition, the team published a review paper on "Emerging Materials and Transistors for Integrated Circuits" in the National Science Review, summarizing the molecular design of high mobility semiconductor materials and functional fusion of mechanical, optical, and thermal properties. They analyzed and looked forward to the research progress and direction of functionalized high mobility polymer semiconductors.
The research work was supported by the National Natural Science Foundation of China, the Ministry of Science and Technology and the Chinese Academy of Sciences.

A detachable interface strategy for achieving stable, low-voltage stretchable organic transistors and high-resolution X-ray imaging


Multi functional integrated high mobility organic polymer semiconductor molecular materials

Source: Institute of Chemistry

Recommandations associées
  • Massachusetts University team achieves new breakthrough in photolithography chip

    Recently, a research team from the University of Massachusetts Amherst has pioneered a new technology that uses laser irradiation on concentric superlenses on chips to generate holograms, thereby achieving precise alignment of 3D semiconductor chips.This research result, published in the journal Nature Communications, is expected to not only reduce the production cost of 2D semiconductor chips, bu...

    2024-11-06
    Voir la traduction
  • Application and Effect of Laser Cleaning

    Mold cleaning: Mold plays a very important role in industrial production. Currently, there are over a thousand mold related enterprises in China, driving the related output value to nearly 10 billion yuan. Among them, mold cleaning is an essential step in mold production. Laser can achieve contactless cleaning of molds, which is very safe for the surface of the mold, ensuring its accuracy, and can...

    2023-10-14
    Voir la traduction
  • Narrow band tunable terahertz lasers may change material research and technology

    A group of researchers from the Max Planck Institute for Material Structure and Dynamics in Germany explored the effect of manipulating the properties of quantum materials far from equilibrium through customized laser drivers. They found a more effective method to create previously observed metastable superconducting states in fullerene based materials using lasers.By tuning the light source to 10...

    2023-11-21
    Voir la traduction
  • Turn to 4-inch wafers! Dutch Photonics Integrated Circuit Enterprise Announces Production Expansion and Price Reduction

    Recently, SMART Photonics, a Dutch photonic integrated circuit manufacturer, announced a major decision to transfer its entire production capacity from 3-inch wafers to 4-inch silicon substrates, thereby expanding the production scale of photonic chips and significantly reducing chip prices.According to the company, SMART Photonics is one of the first photonic integrated circuit foundries to provi...

    2024-02-03
    Voir la traduction
  • Manufacturing customized micro lenses with optical smooth surfaces using fuzzy tomography technology

    Additive manufacturing, also known as 3D printing, has completely changed many industries with its speed, flexibility, and unparalleled design freedom. However, previous attempts to manufacture high-quality optical components using additive manufacturing methods often encountered a series of obstacles. Now, researchers from the National Research Council of Canada have turned to fuzzy tomography (a...

    2024-05-30
    Voir la traduction