Français

Shanghai Optics and Machinery Institute has made progress in the research of new terahertz sources based on Yb lasers

895
2024-04-09 15:40:54
Voir la traduction

Recently, the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made new progress in generating intense field terahertz waves based on Yb laser pumped organic crystals. The relevant research results were published in Applied Physics Letters under the title "Efficient strong field THz generation from DSTMS crystal pumped by 1030nm Yb laser".

Compared to inorganic crystals such as ZnTe and LiNbO3, organic crystals such as DAST and DSTMS have higher nonlinear coefficients and lower absorption coefficients in the terahertz frequency band. In previous studies, infrared ultra short pulse lasers with wavelengths ranging from 1200 to 1700nm were generally used to pump organic crystals for better phase matching and higher terahertz conversion efficiency. However, obtaining high-energy ultra short laser pulses in this band requires frequency conversion using techniques such as OP (CP) A, which not only greatly reduces energy conversion efficiency and system stability, but also increases equipment cost and complexity. In recent years, ultrafast Yb lasers have received attention from the scientific and industrial communities due to their advantages in low cost, high power, and miniaturization. The use of Yb laser to directly drive crystals to generate terahertz waves provides ideas for the development of integrated terahertz sources, as well as opportunities for the development of related scientific research and application fields.

This study elucidates the phase matching conditions for the generation of terahertz waves by organic crystal optical rectification pumped by ultra short pulse lasers, and analyzes the dependence of terahertz frequency, coherence length, etc. on the pumped laser. The research team utilized Yb laser pumped organic crystal DSTMS to generate strong field terahertz. By designing phase matching in the terahertz band and optimizing conditions such as pump laser pulse width and power density, a single pulse energy of 0.4 is obtained μ J. A strong field terahertz wave with a peak field strength of 236 kV/cm, covering a frequency spectrum of 0.1-6 THz, and a laser terahertz wave energy conversion efficiency of 0.22%. The above relevant experiments have verified the feasibility of Yb laser pumping organic crystals to generate milliwatt level high-power strong field terahertz waves, providing a new integrated terahertz light source scheme for scientific research and application promotion in related fields.

Relevant work has been supported by the national key research and development plan, the National Natural Science Foundation of China, and the Chinese Academy of Sciences instrument and equipment development project.

Figure 1. Generation and characterization of strong field terahertz waves (a) Experimental optical path; (b) Terahertz time-domain waveform and spectrum (illustrated as terahertz focal spot).

Figure 2. Laser terahertz wave phase matching (a) The refractive index of DSTMS crystal in the infrared and terahertz bands; (b) The dependence of terahertz frequency, coherence length, etc. on the wavelength of the pump laser; (c) The terahertz coherence length at a pump laser wavelength of 1030 nm; (d) The absorption characteristics of DSTMS crystals in the infrared and terahertz bands.

Source: Shanghai Institute of Optics and Mechanics

Recommandations associées
  • Japan's Murata Machinery Launches a Punch and 4kW Fiber Laser Integrated System

    Recently, Murata Machinery USA, a representative Japanese manufacturer of machinery and CNC machine tools, announced the launch of the latest cutting-edge punch and fiber laser integrated equipment - MF3048HL. This integrated machine combines the advantages of punch operation and laser cutting technology, eliminating the need for separate settings or material transfer between machines.Muratec's pu...

    2023-09-01
    Voir la traduction
  • The 2023 International Quantum Photonics Conference attracted over 600 attendees from 16 countries and regions

    On November 25th, Jinhua welcomed the 2023 International Quantum Photon Conference, which will lead the future of technology. This grand event is jointly hosted by the Chinese Society of Optical Engineering and the Jinhua Municipal Government, with joint support from the University of Science and Technology of China, Zhejiang Normal University, and the PhotoniX journal. The conference, with the th...

    2023-11-27
    Voir la traduction
  • Oxford University develops technology for capturing strong laser pulses in one go

    Physicists at the University of Oxford have unveiled a “pioneering” method for capturing the full structure of ultra-intense laser pulses in a single measurement. The breakthrough, a collaboration with Ludwig-Maximilian University of Munich and the Max Planck Institute for Quantum Optics, could revolutionize the ability to control light-matter interactions, say the team.The Oxford announcement sta...

    07-07
    Voir la traduction
  • Dark Solitons Discovered in Ring Semiconductor Lasers

    Dark solitons - the extinction region in a bright background - spontaneously form in a ring semiconductor laser. Observations conducted by an international research group may lead to improvements in molecular spectroscopy and integrated optoelectronics.Frequency comb - a pulse laser that outputs light at equidistant frequencies - is one of the most important achievements in the history of laser ph...

    2024-02-01
    Voir la traduction
  • Researchers at Georgia Institute of Technology have developed cost-effective nanoscale printing

    A team of researchers from Georgia Institute of Technology has developed a scalable printing system for metal nanostructures using a new technology called superluminescent light projection. The inventor of this technology Dr. Sourabh Saha and Jungho Choi submitted a patent application for nanoscale printing.Nowadays, the cost of existing nanoscale printing technologies hinders their widespread use...

    2024-02-19
    Voir la traduction