Français

Oxford University develops technology for capturing strong laser pulses in one go

97
2025-07-07 11:12:47
Voir la traduction

Physicists at the University of Oxford have unveiled a “pioneering” method for capturing the full structure of ultra-intense laser pulses in a single measurement. The breakthrough, a collaboration with Ludwig-Maximilian University of Munich and the Max Planck Institute for Quantum Optics, could revolutionize the ability to control light-matter interactions, say the team.
The Oxford announcement states: “This would have transformative applications in many areas, including research into new forms of physics and realising the extreme intensities required for fusion energy research. The achievement is described in Nature Photonics.

 



Ultra-intense lasers can accelerate electrons to near-light speeds within a single oscillation of an electric field, making them a powerful tool for studying extreme physics. However, their rapid fluctuations and complex structure make real-time measurements of their properties challenging. Until now, existing techniques typically required hundreds of laser shots to assemble a complete picture, limiting reesrachers’ ability to capture the dynamic nature of these extreme light pulses.

RAVEN: single-shot diagnosis

The new study, jointly led by researchers in the University of Oxford’s Department of Physics and the Ludwig-Maximilian University of Munich (LMU), Germany, describes a novel single-shot diagnostic technique, named RAVEN (Real-time Acquisition of Vectorial Electromagnetic Near-fields). This allows scientists to measure the full shape, timing, and alignment of individual ultra-intense laser pulses with high precision.

Having a complete picture of a laser pulse’s behaviour could revolutionize performance gains in many areas. For example, it could enable scientists to fine-tune laser systems in real-time and bridge the gap between experimental reality and theoretical models, providing better data for computer models and AI-powered simulations.

Splitting beam into two
The method works by splitting the laser beam into two parts. One of these is used to measure how the laser’s wavelength changes over time, while the other part passes through a birefringent material which separates light with different polarisation states. A microlens array then records how the laser pulse’s wavefront, or its shape and direction, is structured.

Lead researcher Sunny Howard, PhD researcher at Oxford and visiting scientist to LMU, said, “Our approach enables the complete capture of an ultra-intense laser pulse in real-time, including its polarization state and complex internal structure. This not only provides unprecedented insights into laser-matter interactions but also paves the way for optimizing high-power laser systems in a way that was previously impossible.”

The technique was successfully tested on the ATLAS-3000 petawatt-class laser in Germany, where it revealed small distortions and wave shifts in the laser pulse that were previously impossible to measure in real-time, allowing the research team to fine-tune the instrument. These distortions, known as spatio-temporal couplings, can significantly affect the performance of high-intensity laser experiments.

By providing real-time feedback, RAVEN allows for immediate adjustments, improving the accuracy and efficiency of experiments in plasma physics, particle acceleration, and high-energy density science. It also results in significant time savings, since multiple shots are not required to fully characterise the laser pulse’s properties.

The technique also provides a potential new route to realise inertial fusion energy devices in the laboratory – a key gateway step towards generating fusion energy at a scale sufficient to power societies. Inertial fusion energy devices use ultra-intense laser pulses to generate highly energetic particles within a plasma, which then propagate into the fusion fuel.


Co-author Professor Peter Norreys, also from Oxford’s Department of Physics, said, “Where most existing methods would require hundreds of shots, RAVEN achieves a complete spatio-temporal characterisation of a laser pulse in just one. This not only provides a powerful new tool for laser diagnostics but also has the potential to accelerate progress across a wide range of ultra-intense laser applications, promising to push the boundaries of laser science and technology.”

Looking ahead, the researchers hope to expand the use of RAVEN to a broader range of laser facilities and explore its potential in optimising inertial fusion energy research, laser-driven particle accelerators and high-field quantum electrodynamics experiments.

Source: optics.org

Recommandations associées
  • The researchers used ultrafast lasers to create nanoscale photonic crystals

    The optical properties of photonic crystals are closely related to their lattice constants, which are usually required to be in the same order of magnitude as the operating wavelength. In a crystal material, the photonic crystal structure is formed by the periodic arrangement in space of units whose dielectric constant is different from that of the crystal itself, and whose lattice constant depend...

    2023-08-04
    Voir la traduction
  • Shanghai Optical Machine has made progress in frequency shift of even harmonic of single layer MoS2

    Recently, the research team of the State Key Laboratory of High-Field Laser Physics at the Shanghai Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made progress in using high-field lasers to drive the even harmonic frequency shift of single-layer MoS2. The results were published in Optics Express under the title "Frequency shift of even-order high harmonic generation...

    2023-09-07
    Voir la traduction
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the generation of third harmonic in laser air filamentation

    Recently, the team from the State Key Laboratory of Intense Field Laser Physics, Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences found that the third-order harmonics induced by air filamentation of high repetition rate femtosecond lasers have significant self jitter. To solve this bottleneck problem, a solution based on an external DC electric field was proposed, which sign...

    2024-10-10
    Voir la traduction
  • ABB will add optical sensors to four greenhouse gas monitoring satellites

    ABB has signed a third contract with the global leader in high-resolution space greenhouse gas monitoring, GHGSat, to manufacture optical sensors for its C12, C13, C14, and C15 satellites. It is reported that C12, C13, C14, and C15 satellites are scheduled to be launched into orbit in 2024.These new satellites will join GHGSat's expanding constellation for detecting and quantifying industrial gas ...

    2023-12-06
    Voir la traduction
  • Scientists propose new methods to accelerate the commercialization of superlens technology

    Superlenses are nano artificial structures that can manipulate light, providing a technique that can significantly reduce the size and thickness of traditional optical components. This technology is particularly effective in the near infrared region, and has great prospects in various applications, such as LiDAR, which is called "the eye of autonomous vehicle", mini UAV and blood vessel detector.D...

    2024-03-29
    Voir la traduction