Français

Oxford University develops technology for capturing strong laser pulses in one go

358
2025-07-07 11:12:47
Voir la traduction

Physicists at the University of Oxford have unveiled a “pioneering” method for capturing the full structure of ultra-intense laser pulses in a single measurement. The breakthrough, a collaboration with Ludwig-Maximilian University of Munich and the Max Planck Institute for Quantum Optics, could revolutionize the ability to control light-matter interactions, say the team.
The Oxford announcement states: “This would have transformative applications in many areas, including research into new forms of physics and realising the extreme intensities required for fusion energy research. The achievement is described in Nature Photonics.

 



Ultra-intense lasers can accelerate electrons to near-light speeds within a single oscillation of an electric field, making them a powerful tool for studying extreme physics. However, their rapid fluctuations and complex structure make real-time measurements of their properties challenging. Until now, existing techniques typically required hundreds of laser shots to assemble a complete picture, limiting reesrachers’ ability to capture the dynamic nature of these extreme light pulses.

RAVEN: single-shot diagnosis

The new study, jointly led by researchers in the University of Oxford’s Department of Physics and the Ludwig-Maximilian University of Munich (LMU), Germany, describes a novel single-shot diagnostic technique, named RAVEN (Real-time Acquisition of Vectorial Electromagnetic Near-fields). This allows scientists to measure the full shape, timing, and alignment of individual ultra-intense laser pulses with high precision.

Having a complete picture of a laser pulse’s behaviour could revolutionize performance gains in many areas. For example, it could enable scientists to fine-tune laser systems in real-time and bridge the gap between experimental reality and theoretical models, providing better data for computer models and AI-powered simulations.

Splitting beam into two
The method works by splitting the laser beam into two parts. One of these is used to measure how the laser’s wavelength changes over time, while the other part passes through a birefringent material which separates light with different polarisation states. A microlens array then records how the laser pulse’s wavefront, or its shape and direction, is structured.

Lead researcher Sunny Howard, PhD researcher at Oxford and visiting scientist to LMU, said, “Our approach enables the complete capture of an ultra-intense laser pulse in real-time, including its polarization state and complex internal structure. This not only provides unprecedented insights into laser-matter interactions but also paves the way for optimizing high-power laser systems in a way that was previously impossible.”

The technique was successfully tested on the ATLAS-3000 petawatt-class laser in Germany, where it revealed small distortions and wave shifts in the laser pulse that were previously impossible to measure in real-time, allowing the research team to fine-tune the instrument. These distortions, known as spatio-temporal couplings, can significantly affect the performance of high-intensity laser experiments.

By providing real-time feedback, RAVEN allows for immediate adjustments, improving the accuracy and efficiency of experiments in plasma physics, particle acceleration, and high-energy density science. It also results in significant time savings, since multiple shots are not required to fully characterise the laser pulse’s properties.

The technique also provides a potential new route to realise inertial fusion energy devices in the laboratory – a key gateway step towards generating fusion energy at a scale sufficient to power societies. Inertial fusion energy devices use ultra-intense laser pulses to generate highly energetic particles within a plasma, which then propagate into the fusion fuel.


Co-author Professor Peter Norreys, also from Oxford’s Department of Physics, said, “Where most existing methods would require hundreds of shots, RAVEN achieves a complete spatio-temporal characterisation of a laser pulse in just one. This not only provides a powerful new tool for laser diagnostics but also has the potential to accelerate progress across a wide range of ultra-intense laser applications, promising to push the boundaries of laser science and technology.”

Looking ahead, the researchers hope to expand the use of RAVEN to a broader range of laser facilities and explore its potential in optimising inertial fusion energy research, laser-driven particle accelerators and high-field quantum electrodynamics experiments.

Source: optics.org

Recommandations associées
  • Leica Measurement System Development First Person Laser Scanner

    Leica Geosystems, a subsidiary of Hexagon, has developed Leica BLK2GO PULSE, its first person laser scanner, which combines LiDAR sensor technology with the original Leica BLK2GO shape. The technology will be released in early 2024.The scanner provides users with a fast, simple, and intuitive first person scanning method that can be controlled through a smartphone and provides real-time full color...

    2023-10-19
    Voir la traduction
  • GeoCue introduces three new TrueView 3D imaging systems

    Earlier this month, GeoCue, a liDAR mapping hardware and software provider, announced the launch of three new products for its TrueView 3D imaging system. These new systems combine laser scanning and high-resolution imaging, including the TV625, TV680 and TV680LR. All three systems are NDAA-compliant.All three systems are designed to be used in conjunction with drones, and the company note...

    2023-08-04
    Voir la traduction
  • Scientists demonstrate powerful UV-visible infrared full-spectrum laser

    Figure: a. Schematic diagram of the HCF-LN-CPPLN experimental setup. W. CaF? Window M, mirror.b. The bright white light circular spots emitted by the CPPLN sample.c. The first-order diffraction beam of B displays a colorful rainbow pattern from purple to red.d. The HCF-LN-CPPLN module generates normalized spectra of the output full spectrum laser signal through the second NL HHG and third NL SPM e...

    2023-08-25
    Voir la traduction
  • Siemens will provide Rolls Royce with aerospace additive manufacturing components

    Recently, Siemens Energy's Materials Solutions division (hereinafter referred to as Siemens) officially signed a cooperation agreement with Rolls Royce, a well-known enterprise in the field of aviation engines in the UK, agreeing that Siemens will develop and supply mass-produced additive manufacturing components for Rolls Royce's civil aerospace business.Rolls Royce and 3D Printing TechnologyRoll...

    2024-12-13
    Voir la traduction
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the research of attosecond high spatiotemporal resolution imaging

    The attosecond light source has the characteristics of ultra short pulse width, short wavelength, high coherence, and high-precision synchronous control, and has extremely high potential for application in the field of ultrafast imaging. Especially when the attosecond light source reaches the "water window" band, oxygen and hydrogen atoms have weak absorption of X-rays in this band, so water is re...

    2024-10-14
    Voir la traduction