Français

The Science Island team has made breakthroughs in high pulse energy mid infrared fiber transmission

175
2024-03-23 10:01:04
Voir la traduction

Recently, the Jiang Haihe Research Group of the Health Institute of the Chinese Academy of Sciences Hefei Institute of Materia Medica made important progress in the research of the high-energy pulsed laser transmission system in the mid infrared band, and designed a 78 μ The 6-hole microstructure anti resonant hollow core fiber (AR-HCF) with a larger core diameter achieved efficient transmission of 2.79 at room temperature for the first time μ M-band high-energy pulse laser. The relevant achievements have been published in the internationally renowned optical top journal Optics and Laser Technology.

Laser medical instruments usually require a flexible catheter to transmit the laser emitted to the patient's treatment site, but traditional mid infrared laser medical instruments mostly use a guide arm to transmit the laser. However, the traditional light guide arm transmission method for laser has many problems, such as complex system structure, low transmission efficiency, and insufficient flexibility. The use of fiber optic transmission can solve the above problems, but the material of solid core fiber has a low laser damage threshold in the mid infrared band, which cannot meet the requirements of 3 μ High energy density optical guidance requirements for m-band erbium laser medical devices. So, the research team designed and researched an AR-HCF alternative light guide arm with a simple structure, high coupling transmission efficiency, large damage threshold, and flexible transmission to transmit laser energy.

The team adopts a design with 78 μ A 6-well microstructure AR-HCF with a larger core diameter of m, efficiently transported for the first time under room temperature conditions at 2.79 μ M-band high-energy pulse laser. Without damaging the optical fiber, the average coupling transmission efficiency of the entire region is 77.3%, and the highest coupling transmission efficiency reaches 85% under high beam quality and small coupling energy. If the air absorption attenuation in the fiber core is deducted, the self transmission efficiency of the fiber optic system with this structure has actually exceeded 90%. The system achieved a maximum pulse laser energy output of 11.78 mJ, with a corresponding energy density threshold of 350J/cm2, far exceeding the required value for soft tissue ablation of living organisms. At the same time, the minimum bending radius of the AR-HCF is 20cm and the corresponding loss can meet the clinical needs of surgeons, and the laser beam quality at the output end of the AR-HCF is better than that at the input end, which has been improved significantly.

Compared to other structures and materials currently used for 2.79 μ Compared to optical fibers with m-wavelength transmission, the 6-hole structure AR-HCF of this silica has stronger mechanical stability, higher damage threshold, lower bending sensitivity, and superior transmission performance compared to traditional light guide arms. This study is 2.79 μ M Cr, Er: YSGG medical solid-state laser has opened up a new way for efficient transmission.

Figure 1. Cross section structure of AR-HCF

Figure 2.2.79 μ M AR-HCF space transmission experimental device

Figure 3. Loss of AR-HCF under different bending radii and bending directions

Source: Hefei Institute of Physical Sciences, Chinese Academy of Sciences

Recommandations associées
  • Germany has developed direct laser welding technology to achieve adhesive free connection from fiber to chip

    Recently, researchers and their partners from the Fraunhofer Institute for Reliability and Microstructure (IZM) in Germany announced the successful development of a laser welding technology that can efficiently fix optical fibers onto photonic integrated circuits (PICs) without the need for adhesive bonding.This technology is developed in response to biophoton sensing technology, mainly utilizing ...

    2023-08-22
    Voir la traduction
  • The Key Role of Laser Pointing Stability in the Application of Lithography Systems

    Lithography is one of the core processes in semiconductor manufacturing, and extreme ultraviolet lithography technology, as a new generation lithography technology, is also in a rapid development stage. The basic principle is to use photoresist (also known as photoresist) to form corrosion resistance due to photochemical reactions after being photosensitive, and to engrave the patterns on the mask...

    2024-07-02
    Voir la traduction
  • Goethe, University of Central Florida research team showcases light and thin achromatic diffractive liquid crystal optical systems

    Headdisplay devices such as Apple Vision Pro, Meta Quest, and PICO are expected to completely change the way we perceive and interact with various digital information. By providing more direct interaction with digital information, MR has become one of the key driving forces for the metaverse, spatial computing, and digital twins, and has begun to be widely applied in fields such as intelligent tou...

    2023-09-26
    Voir la traduction
  • Laser beam combined with metal foam to produce the brightest X-ray

    According to the Physicists' Network, scientists from Lawrence Livermore National Laboratory (LLNL) in the United States ingeniously combined the high-power laser emitted by the National Ignition Facility (NIF) with the ultra light metal foam to create the brightest X-ray ever. These ultra bright high-energy X-rays play an important role in many research fields, including imaging of extremely dens...

    01-18
    Voir la traduction
  • Tesla Intelligent Robot Vacuum Laser AI200 has a maximum operating time of 130 minutes

    In most cases, devices that are part of so-called smart homes have become a part of our lives. These appliances have a significant impact on our comfort level and contribute to daily household chores, such as cleaning. There are many products in the market that have paved the way in this regard, but the amount we usually have to pay for them effectively prevents us from purchasing.Of course, we ca...

    2023-11-10
    Voir la traduction