Français

The Science Island team has made breakthroughs in high pulse energy mid infrared fiber transmission

622
2024-03-23 10:01:04
Voir la traduction

Recently, the Jiang Haihe Research Group of the Health Institute of the Chinese Academy of Sciences Hefei Institute of Materia Medica made important progress in the research of the high-energy pulsed laser transmission system in the mid infrared band, and designed a 78 μ The 6-hole microstructure anti resonant hollow core fiber (AR-HCF) with a larger core diameter achieved efficient transmission of 2.79 at room temperature for the first time μ M-band high-energy pulse laser. The relevant achievements have been published in the internationally renowned optical top journal Optics and Laser Technology.

Laser medical instruments usually require a flexible catheter to transmit the laser emitted to the patient's treatment site, but traditional mid infrared laser medical instruments mostly use a guide arm to transmit the laser. However, the traditional light guide arm transmission method for laser has many problems, such as complex system structure, low transmission efficiency, and insufficient flexibility. The use of fiber optic transmission can solve the above problems, but the material of solid core fiber has a low laser damage threshold in the mid infrared band, which cannot meet the requirements of 3 μ High energy density optical guidance requirements for m-band erbium laser medical devices. So, the research team designed and researched an AR-HCF alternative light guide arm with a simple structure, high coupling transmission efficiency, large damage threshold, and flexible transmission to transmit laser energy.

The team adopts a design with 78 μ A 6-well microstructure AR-HCF with a larger core diameter of m, efficiently transported for the first time under room temperature conditions at 2.79 μ M-band high-energy pulse laser. Without damaging the optical fiber, the average coupling transmission efficiency of the entire region is 77.3%, and the highest coupling transmission efficiency reaches 85% under high beam quality and small coupling energy. If the air absorption attenuation in the fiber core is deducted, the self transmission efficiency of the fiber optic system with this structure has actually exceeded 90%. The system achieved a maximum pulse laser energy output of 11.78 mJ, with a corresponding energy density threshold of 350J/cm2, far exceeding the required value for soft tissue ablation of living organisms. At the same time, the minimum bending radius of the AR-HCF is 20cm and the corresponding loss can meet the clinical needs of surgeons, and the laser beam quality at the output end of the AR-HCF is better than that at the input end, which has been improved significantly.

Compared to other structures and materials currently used for 2.79 μ Compared to optical fibers with m-wavelength transmission, the 6-hole structure AR-HCF of this silica has stronger mechanical stability, higher damage threshold, lower bending sensitivity, and superior transmission performance compared to traditional light guide arms. This study is 2.79 μ M Cr, Er: YSGG medical solid-state laser has opened up a new way for efficient transmission.

Figure 1. Cross section structure of AR-HCF

Figure 2.2.79 μ M AR-HCF space transmission experimental device

Figure 3. Loss of AR-HCF under different bending radii and bending directions

Source: Hefei Institute of Physical Sciences, Chinese Academy of Sciences

Recommandations associées
  • Shanghai Optics and Machinery Institute has made progress in the development of picosecond reflectors based on composite materials

    Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made progress in the research of picosecond reflectors based on composite materials. The relevant research results are titled "Hybrid material based mirror coatings for picosecond laser applications" and published in Optics and Laser Techn...

    2024-06-12
    Voir la traduction
  • Researchers use liquid metal and laser ablation to create stretchable micro antennas

    Researchers have developed a new method of making micro stretchable antenna with water gel and liquid metal. These antennas can be used for wearable and flexible wireless electronic devices to provide links between devices and external systems for power transmission, data processing, and communication.Using our new manufacturing method, we have demonstrated that the length of liquid metal antennas...

    2023-09-19
    Voir la traduction
  • Using laser controlled filaments in vanadium dioxide to enhance neural morphology calculations

    In a new "Progress in Science" study, scientists from the University of Science and Technology of China have developed a dynamic network structure for neural morphology calculations using laser controlled conductive wires.Neuromorphic computing is an emerging research field that draws inspiration from the human brain to create efficient and intelligent computer systems. The core of neuromorphic co...

    2023-10-13
    Voir la traduction
  • Leica Cine 1 laser TV with 4K display screen launched with a starting price of $8995

    Photography brand Leica has launched its first 4K movie and television. The Leica Cine 1 laser TV was announced a year later during the I FA 2022 period. This iconic photography brand is shifting some of its focus to projecting perfect images in our living room.featureThe Leica Cine 1 laser TV embodies Leica's philosophy in its camera design. Leica continues to provide precision optical engineerin...

    2023-10-19
    Voir la traduction
  • AMCM 8 laser M 8K metal 3D printing equipment is about to be launched, equipped with 8 lasers

    In October 2023, Germany's AMCM (EOS, a global technology leader in industrial grade additive manufacturing) announced the upcoming launch of the M 8K metal 3D printing equipment. The device will be equipped with 8 lasers, with a construction volume of 800 x 800 x 1200 millimeters, nearly four times the size of AMCM's previously launched M 4K metal 3D printing device on the market.ArianeGroup's ho...

    2023-10-19
    Voir la traduction