Français

New technology can efficiently heal cracks in nickel based high-temperature alloys manufactured by laser additive manufacturing

397
2024-03-15 14:10:04
Voir la traduction

Recently, Professor Zhu Qiang's team from the Department of Mechanical and Energy Engineering at Southern University of Science and Technology published their latest research findings in the Journal of Materials Science. The research team has proposed a new process for liquid induced healing (LIH) laser additive manufacturing of cracks. By controlling micro remelting at grain boundaries to introduce interstitial liquid film filling defects, cracks in components can be "welded" at the microscale. This research achievement is of great significance for breaking through the industry challenge of laser additive manufacturing of high crack sensitivity alloys.

Paper graphic abstract


Liquid induced hearing of cracks in nickel based superalloy fabricated by laser powder bed fusion - ScienceDirect
Laser additive manufacturing is a revolutionary technology that solves the problem of personalized and complex metal component integral forming, with huge application prospects. However, only over ten out of the hundreds of commonly used engineering alloys can stably achieve crack free printing, which is far from meeting the needs of replacing traditional processes.

Compared to processes such as casting and welding, laser additive manufacturing technology has inherent properties of micro zone ultra normal metallurgy and rapid solidification, making it more prone to cracking. There are two existing methods to deal with cracks in laser additive manufacturing. One is to suppress cracks during the printing process by adjusting the alloy solidification range, grain morphology, and component temperature gradient. However, there are significant differences in the effectiveness of different alloy systems, with narrow process windows and poor stability, making it difficult to completely eliminate cracks; The second is to use hot isostatic pressing (HIP) post-treatment to close cracks. However, HIP cannot repair surface defects and requires further processing to remove surface materials, which undoubtedly weakens the core advantage of additive manufacturing technology in forming complex structures.

In addition, the extremely high working conditions make HIP equipment complex and extremely expensive, making it only suitable for a small number of high value-added metal additive manufacturing components.

In this regard, the research team proposed the liquid induced healing (LIH) technology based on the technical idea of introducing intergranular continuous liquid film to "weld" cracks, and verified the feasibility and progressiveness of the LIH technology by taking the typical high crack sensitivity alloy IN738LC as the test alloy. The research results showed that the mechanical properties of the alloy were significantly improved after LIH technology treatment. In terms of tensile properties, the LIH state is higher than the cast state and hot isostatic pressing state, while in terms of high-temperature creep, the LIH state alloy exhibits properties comparable to precision casting and far higher than the hot isostatic pressing state.

It is reported that compared with the most reliable HIP technology currently available, LIH technology has significant advantages in defect elimination efficiency, universality, convenience, and cost. Firstly, it breaks through the technical limitations of its inability to heal surface defects, making it suitable for pore healing treatment of complex components without the need for additional machining to remove the surface; Secondly, the pressure required by LIH is less than 1/20 of that of HIP technology, eliminating safety hazards of high-pressure special equipment and simplifying equipment construction and cost; Thirdly, there is no need for insulation treatment, while HIP needs to be insulated at high temperatures for several hours, thereby improving process efficiency and reducing energy consumption costs.

Source: Sohu

Recommandations associées
  • NUBURU will enter a new stage of diversified development

    Recently, NUBURU, a global developer of high-power and high brightness industrial blue light laser technology, announced the signing of a strategic commitment letter, officially launching a deep layout in the field of national defense and security. This transformation plan covers capital restructuring, technology mergers and acquisitions, and management team upgrades, marking a new stage of divers...

    02-26
    Voir la traduction
  • Natural Communication: Oxide Dispersion Enhancement for High Performance 3D Printing of Pure Copper

    The laser additive manufacturing technology of pure copper (Cu) with complex geometric shapes has opened up vast opportunities for the development of microelectronic and telecommunications functional devices. However, laser forming of high-density pure copper remains a challenge.Recently, the forefront of additive manufacturing technology has noticed a joint report by the University of Hong Kong, ...

    04-11
    Voir la traduction
  • Progress in the Application of China University of Science and Technology's Femtosecond Laser Processing Technology in the Biomedical Field

    Recently, Associate Professor Li Jiawen's research group at the Micro and Nano Engineering Laboratory of the School of Engineering Science, University of Science and Technology of China proposed a femtosecond laser dynamic holographic processing method suitable for efficient construction of three-dimensional capillary scaffolds, which is used to generate a three-dimensional capillary network. This...

    2024-02-11
    Voir la traduction
  • Bohong has developed a new type of ultrafast laser for material processing

    Chief researcher Clara Saraceno will bring the new laser to the market with the support of ERC funding.Femtosecond lasers can be used to create high-precision microstructures, such as those required for smartphone displays and various automotive technology applications.Professor Clara Saraceno from Ruhr University in Bochum, Germany is committed to developing and introducing cheaper and more effic...

    2023-08-22
    Voir la traduction
  • Tokyo Institute of Technology collaborates with EX Fusion to promote laser fusion energy closer to commercialization

    Recently, Tokyo Institute of Technology and EX Fusion established a collaborative research group focused on promoting liquid metal equipment to achieve commercial laser fusion reactors. The two sides held an official signing ceremony in Tokyo on October 11th, marking the official start of their cooperation.The EX Fusion Liquid Metals Collaborative Research Group was established with the support of...

    2023-10-17
    Voir la traduction