Français

Generating dark and entangled states in optical cavities: unlocking new possibilities in quantum metrology

185
2024-02-20 14:20:50
Voir la traduction

Physicists have been working hard to improve the accuracy of atomic clocks, which are the most precise timing devices currently available. A promising way to achieve higher accuracy is to utilize spin squeezed states in clock atoms.

Spin squeezed states are entangled quantum states in which particles work together to counteract their inherent quantum noise. These states provide incredible potential for quantum enhanced measurement and metrology. However, creating spin squeezed states with minimal external noise in optical transitions has always been a challenging task.

The research team led by Anna Maria Ray has been focusing on using optical cavities to generate spin squeezed states. These chambers are composed of mirrors, allowing light to reflect back and forth multiple times. In the cavity, atoms can synchronize their photon emission, producing much brighter light than individual atoms alone. This phenomenon is called superradiance. According to the control method of superradiance, it may lead to entanglement or destruction of the required quantum state.

In their previous work, Rey and her team found that multi-level atoms with two or more internal energy states provided unique opportunities for utilizing superradiance emission. By inducing atoms to cancel each other's emission, they can produce dark states that are not affected by superradiance.

Now, in two recently released studies, the team has revealed a method that can not only generate dark states in optical cavities, but also spin compress these states. This breakthrough opens up exciting possibilities for the generation of entangled clocks and the advancement of quantum metrology.

Researchers have discovered two methods for preparing highly entangled spin squeezed states in atoms. One method is to use a laser to power atoms and place them at special points on a superradiance potential called saddle points. At these points, atoms reshape their noise distribution and become highly compressed. Another method is to transfer the superradiance state to the dark state, utilizing specific points where atoms approach bright spots with zero curvature.
The fascinating aspect of these findings is that even without external laser drive, spin squeezing can be retained. This conversion of compressed state to dark state not only maintains the reduced noise characteristics, but also ensures their survival.

These findings provide new avenues for quantum metrology, enabling more precise measurements and enhancing the capabilities of atomic clocks. By utilizing dark and entangled states within optical cavities, researchers can unleash the potential of quantum enhancement technology and delve deeper into the fascinating world of quantum physics.

Source: Laser Net

Recommandations associées
  • Filatek: Leading the Development of Laser, Shining "Additive Prince"

    In recent years, the field of laser technology has received widespread attention from the outside world. At that time, the Munich Shanghai Electronic Production Equipment Exhibition was successfully held in Shanghai, and Suzhou Feilaitek Laser Technology Co., Ltd. (hereinafter referred to as "Feilaitek"), a leading enterprise in the field of industrial laser 3D dynamic focusing systems, appeared a...

    2024-04-12
    Voir la traduction
  • Focusing on the headquarters of Kuaidiqin Gen, a place of innovation and prosperity

    Have you ever imagined finding exquisitely designed and vibrant buildings in an industrial park? The headquarters of Deutschengen in Germany is such a place that combines creativity and practicality.Carefully planned and focused sustainable architecture combines design and functionality, showcasing the best appearance of industrial architecture and a vivid practice of its corporate spirit and valu...

    2024-04-28
    Voir la traduction
  • Dutch satellite instruments have achieved milestone achievements in transmitting laser data to Earth

    TNO wrote that this is the first time Dutch technology has been used to send data from a satellite to a ground station press release on Earth. This technology uses invisible laser signals to achieve faster and safer data flow compared to ubiquitous communication radio frequencies.Kees Buijsrogge, Director of TNO Space, said, "This critical milestone marks a significant achievement for the Netherla...

    2024-01-25
    Voir la traduction
  • Laser Uranium Enrichment Company (GLE) accelerates development

    Paducah, located in western Kentucky, may become the location of the world's first commercial facility to adopt this technology.Since 2016, Global Laser Enrichment Company (GLE) has partnered with the US Department of Energy to use its unique molecular process to concentrate 200000 tons of depleted uranium "tails" stored at the former Padiuka gas diffusion plant in western Kentucky.After years of ...

    2024-06-22
    Voir la traduction
  • Laser engraving: Researchers have created a revolutionary technology

    Recently, a group of researchers from the University of Cambridge developed an innovative method of using high-energy lasers to improve 3D printing of metals. This discovery has the potential to change the way we design and manufacture complex metal objects.3D printing has completely changed the landscape of the manufacturing industry. However, it faces obstacles, especially in terms of the charac...

    2023-11-24
    Voir la traduction