Français

French silicon optical company Scintil realizes the integration of III-VI DFB lasers and amplifiers with standard silicon optical technology

964
2024-03-05 14:11:25
Voir la traduction

Recently, French silicon photonics company Scintil Photonics announced an exciting collaboration, successfully integrating III-V-DFB lasers and amplifiers with standard silicon photonics technology in the production of Israeli semiconductor company Tower Semiconductor. This milestone collaboration marks a crucial step for Scintil in strengthening its supply chain, bringing new possibilities to communication technology.

Scintil's fully integrated circuits utilize unique proprietary technology, leveraging the power of standard silicon photonics to achieve single-chip integration of lasers and amplifiers. This technology brings higher performance, speed, reliability, and density to data centers, artificial intelligence, and 5G applications while maintaining low power consumption.

Scintil has chosen Tower Semiconductor's large-scale basic PH18M silicon photon foundry technology, which includes low loss waveguides, photodetectors, and modulators. By integrating DFB lasers and amplifiers on a single chip on the back of the wafer, Scintil's circuit not only eliminates the need for sealed packaging in customer testing, but also demonstrates significant improvements in aging and robustness.

Sylvie Menezo, President and CEO of Scintil Photonics, welcomes the collaboration with the world's leading wafer foundry, Tower Semiconductor. She stated that this marks an important milestone in their ability to provide laser enhanced silicon photonic ICs, redefining integration, performance, and scalability. This will enable Scintil to produce in large quantities to meet market demand. In addition, their technology provides extraordinary opportunities for the integration of more materials, such as quantum dots and lithium niobate materials.

According to market research firm LightCounting, the silicon photon transceiver market is expected to grow at a compound annual growth rate (CAGR) of 24%, and its total addressable market (TAM) is expected to reach at least $7 billion by 2025. This indicates that the prospects of silicon photon technology in the field of communication are very promising.

Edward Preisler, Vice President and General Manager of the RF Business Unit at Tower Semiconductor, stated that they are pleased to support Scintil in this highly integrated solution. This solution fully utilizes Tower's mature production components, especially the integration of III-V optical amplifiers/lasers, in line with Tower Semiconductor's commitment to bringing cutting-edge silicon photon technology to the market.

Source: Laser Net

Recommandations associées
  • Tiny yet Powerful: How Lasers on Chips Change the Game Rules of Photonics

    Chip level ultrafast mode-locked laser based on nanophotonic lithium niobate.Researchers have created a compact mode-locked laser integrated into a nanophotonic platform, capable of generating high-power and ultrafast optical pulses. The breakthrough in miniaturization of MLL technology can significantly expand the application of photonics.Innovation in mode-locked laser technologyTo improve the t...

    2023-12-27
    Voir la traduction
  • The United States promotes the development of next-generation EUV lithography technology

    LLNL has long been a pioneer in the development of EUV lithography technology.A laboratory located in California will lay the foundation for the next development of extreme ultraviolet (EUV) lithography technology. The project is led by Lawrence Livermore National Laboratory (LLNL) and aims to promote the next development of EUV lithography technology, centered around the laboratory's developed dr...

    01-06
    Voir la traduction
  • Research has shown that patterns on crystals can double the optical sensitivity of photodetectors

    Scientists from the Institute of Automation and Control Process at the Far East Branch of the Russian Academy of Sciences described the changes on the surface of monocrystalline silicon during laser processing. The author of this study placed the crystal in a methanol solution and applied a laser pulse lasting one thousandth of a second to the sample, with a pulse count ranging from five to fifty ...

    2024-04-01
    Voir la traduction
  • Veeco Instruments wins IBM big order

    On August 14th local time, Veeco Instruments, a well-known American laser annealing manufacturer, announced an important cooperation with technology giant IBM. It is reported that IBM has selected Veeco Instruments' WaferStorm wet processing system as support for its advanced packaging applications, and the two parties have signed a joint development agreement to explore the potential of utilizi...

    2024-08-23
    Voir la traduction
  • Enhanced dielectric, electrical, and electro-optic properties: investigation of the interaction of dispersed CdSe/ZnS quantum dots in 8OCB liquid crystals in the intermediate phase

    authorElsa Lani, Aloka SinhaabstractAt present, the progress in developing new liquid crystal materials for next-generation applications mainly focuses on improving the physical properties of liquid crystal systems.Recent research progress has shown that functionalized nanoparticles embedded in LC matrix can significantly alter the properties of LC materials based on the interaction between host m...

    2024-03-04
    Voir la traduction