Français

Tiny yet Powerful: How Lasers on Chips Change the Game Rules of Photonics

479
2023-12-27 13:50:03
Voir la traduction

Chip level ultrafast mode-locked laser based on nanophotonic lithium niobate.
Researchers have created a compact mode-locked laser integrated into a nanophotonic platform, capable of generating high-power and ultrafast optical pulses. The breakthrough in miniaturization of MLL technology can significantly expand the application of photonics.

Innovation in mode-locked laser technology
To improve the technology that typically requires bulky desktop devices, Quishi Guo and his colleagues reduced the size of mode-locked lasers to optical chips with integrated nanophoton platforms. The research results show that it provides prospects for the development of ultrafast nanophotonic systems for widespread applications.

The potential of miniaturizing MLL
A mode-locked laser can generate coherent ultra short optical pulses at an extremely fast speed - approximately picoseconds and femtoseconds. These devices have achieved many technologies in the field of photonics, including extreme nonlinear optics, two-photon microscopy, and optical computing.

However, most MLLs are expensive, require high power consumption, and require bulky discrete optical components and equipment. Therefore, the use of ultrafast photon systems is usually limited to desktop laboratory experiments. More importantly, the so-called "integrated" MLL used to drive nanophotonic platforms has key limitations, such as low peak power and lack of controllability.

Breakthrough in Nanophoton MLL Integration
Guo et al. created an optical chip sized integrated MLL by mixing semiconductor optical amplifier chips with a novel thin film lithium niobate nanophotonic circuit.

According to the author, MLL generates ultra short to 4.8 picosecond light pulses at approximately 1065 nanometers, with a peak power of~0.5 watts - the highest output pulse energy and peak power of any integrated MLL in the nanophotonic platform.

In addition, researchers have shown that the repetition rate of integrated MLL can be tuned in the range of~200 MHz and the coherent characteristics of the laser can be precisely controlled, providing a pathway for a completely stable on-chip nanophoton frequency comb source.

Source: Laser Net



Recommandations associées
  • Trends and Reflections on the Laser Industry in 2025

    In 2024, the laser industry will still reach new heights, although some predicted concerns have been fulfilled! From beginning to end, the development path of the manufacturing industry has been full of uncertainty, but as time passes and we enter a new year, new technologies continue to emerge like mushrooms after rain.In 2025, practitioners in the laser and manufacturing industries still face ma...

    01-02
    Voir la traduction
  • The influence of post-processing methods on the fatigue performance of materials prepared by selective laser melting

    Researchers from Opole University of Technology in Poland have reported the latest progress in studying the effect of post-processing methods on the fatigue performance of materials prepared by selective laser melting (SLM). The related research was published in The International Journal of Advanced Manufacturing Technology under the title "Influence of post processing methods on fatigue performan...

    01-17
    Voir la traduction
  • High Resolution Visible Light Imaging of Large Aperture Telescopes

    The deformable mirror used in adaptive optics can instantly correct the static wavefront aberrations and atmospheric turbulence wavefront disturbances of the optical system by changing its surface. This enables the optical system to automatically adapt to changes in the environment and maintain optimal performance. It is widely used in high-resolution astronomical observations, laser atmospheric t...

    2023-10-31
    Voir la traduction
  • TRUMPF machine cooler saves 50 percent energy

    Ditzingen, 05. March 2025 – At its in-house exhibition INTECH, high-tech company TRUMPF is showcasing a new cooler for its laser cutting machines. The new unit is capable of reducing energy consumed during the cooling process and uses fifty percent less energy than conventional solutions. Unlike conventional coolers, the main components of this new solution— such as pumps, fans and compressors— ar...

    03-14
    Voir la traduction
  • The creator of a computer that uses lasers to perform complex tasks at the speed of light has announced a breakthrough in high-performance computing

    LightSolver's new LPU100 system is powered by 100 lasers and can solve the most challenging problems through up to 120100 combinations.This computer was created by Dr. Ruti Ben Shlomi, CEO of LightSolver and Dr. Chen Tradonsky, CTO, a physicist at the Rehowatt Weizmann Institute for Science.It is not suitable for household use because its high computing power exceeds individual needs, but it is su...

    2024-03-21
    Voir la traduction