Français

Shanghai Photonics Corporation has made progress in laser welding of structural materials (Ni-28W-6Cr alloy) for new-generation molten salt reactors

197
2023-08-25 13:59:25
Voir la traduction

Recently, Yang Shanglu, a researcher at the Laser Intelligent Manufacturing Technology Research and Development Center of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made new progress in laser welding of the fourth-generation reactor-molten salt reactor structural material Ni-28W-6Cr nickel-based superalloy. 

The research team applied the high power fiber laser welding technology to Ni-28W-6Cr alloy for the first time, and analyzed the dynamic cracking behavior characteristics of the laser welding hot crack by using high speed camera technology, and clarified the cracking mechanism. 

The relevant research results are summarized as "Dynamic laser welding hot cracking behavior and mechanism of new structural material Ni-28W-6Cr alloy for molten. salt reactor "was published in the Journal of Materials Research and Technology.

Ni-28W-6Cr high temperature nickel base alloy is a new structural material designed for the new generation of high temperature molten salt reactor (> 850℃) in China, which has excellent high temperature resistance and corrosion resistance to molten salt. However, due to the high alloying level of the alloy, it has a very high sensitivity to welding hot cracks, which poses a great threat to the service safety of welded joints and structures. 

In order to improve the laser welding quality of Ni-28W-6Cr alloy and promote the application of nuclear energy engineering, it is urgent to study the cracking behavior and influencing factors of Ni-28W-6Cr high temperature nickel base alloy laser welding, and solve the problem of laser cracking by elucidating the cracking mechanism.

The dynamic crack behavior of Ni-28W-6Cr alloy laser welding was analyzed by using a 10,000-watt laser processing unit combined with high-speed imaging technology, and the relationship between the type, number, size, propagation behavior and laser power of the hot crack was obtained. 

The influencing factors of hot crack initiation and propagation (laser process parameters, element segregation, precipitated phase and stress, etc.) were clarified, and the mechanism of hot crack cracking in laser welding was elucidated. The work laid a foundation for the control of Ni-28W-6Cr alloy laser welding hot crack, the realization of alloy defect free laser welding, and promote the construction of a new generation of molten salt reactor.

This work is supported by the National Natural Science Foundation Youth Fund and the National Key Research and Development Program.

Figure 1: (a) Dynamic cracking behavior of Ni-28W-6Cr alloy during laser welding; (b) microstructure of Ni-28W-6Cr alloy during laser welding.

Figure 2 EBSD analysis results of Ni-28W-6Cr alloy laser welding hot crack: (a) solidification crack, (b) liquefaction crack.

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Recommandations associées
  • Researchers use spectroscopic methods to characterize ancient Egyptian mining gemstones

    In a recent study published in the journal AIP Advances, researchers used molecular and elemental spectroscopy techniques such as laser induced breakdown spectroscopy (LIBS), Raman spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy to characterize mines in ancient Egypt.In this study, researchers examined various gemstones that can be traced back to the era of the pharaohs. The team...

    2023-08-31
    Voir la traduction
  • Defects and solutions that are prone to occur when laser welding square shell battery explosion-proof valves for power batteries

    For example, the commonly used square shell battery cells for power batteries include laser welding of cover explosion-proof valves, laser welding of pole columns, and laser welding of cover plates and shells. During the process of laser welding of aluminum alloy, it is easy to generate unqualified phenomena such as explosion points, pores, welding cracks, excessive depth and width of fusion. ...

    2023-09-15
    Voir la traduction
  • The University of Rochester has received nearly $18 million to build the world's highest power laser system

    After receiving a $14.9 million contract from the US Department of Defense (DOD) last month to study the pulse laser effect, the University of Rochester recently received nearly $18 million in funding from the National Science Foundation (NSF) for the key technology design and prototype of the EP-OPAL, also known as the OMEGA EP coupled optical parametric amplifier line (OPAL).EP-OPAL is a new fac...

    2023-09-28
    Voir la traduction
  • From Fiction to Reality: Laser Cutting Technology Has Entered the Shipbuilding Industry

    Laser cutting is a type of metal processing. In industry, there are three main cutting methods: mechanical cutting, thermal cutting, and a set of high-precision cutting methods. Laser technology belongs to the third category. The cutting in this method occurs due to the influence of the laser beam on the product. In fact, it is the molten metal produced by rapid pulse point melting and then blowin...

    2023-12-28
    Voir la traduction
  • 330 million US dollars! This laser ophthalmic treatment developer has been acquired

    Recently, according to a report submitted by BioLight to the Tel Aviv Stock Exchange, Swiss American pharmaceutical and medical device giant Alcon Pharmaceuticals is acquiring Israeli medical technology company Belkin Vision.It is reported that BioLight will sell its 4% stake in Belkin Vision, which may be worth up to $330 million based on the milestones established in the transaction.Belkin Visio...

    2024-05-06
    Voir la traduction