Français

Optical Capture of Optical Nanoparticles: Fundamentals and Applications

510
2023-11-25 14:18:38
Voir la traduction

A new article published in Optoelectronic Science reviews the basic principles and applications of optical capture of optical nanoparticles. Optical nanoparticles are one of the key elements in photonics. They can not only perform optical imaging on various systems, but also serve as highly sensitive remote sensors.

Recently, the success of optical tweezers in separating and manipulating individual optical nanoparticles has been demonstrated. This opens the door to high-resolution, single particle scanning, and sensing.

This article summarizes the most relevant results in the rapidly growing field of optical capture of individual optical nanoparticles. According to the different materials and their optical properties, optical nanoparticles can be divided into five categories: plasma nanoparticles, lanthanide doped nanoparticles, polymer nanoparticles, semiconductor nanoparticles, and nanodiamonds. For each scenario, the main progress and applications were described.

Plasma nanoparticles have a high polarization rate and high photothermal conversion efficiency, therefore, it is necessary to make a critical selection of their capture wavelength. The typical application of optical capture based on the luminescent properties of plasma nanoparticles is the study of particle particle interactions and temperature sensing. This study was conducted by analyzing the radiation absorbed, scattered, or emitted by nanoparticles.

Lanthanide doped nanoparticles have a narrow emission band, longer fluorescence lifetime, and temperature sensitive emission intensity. This article reviews the temperature sensing of batteries achieved by single optical capture of lanthanide doped nanoparticles. The structural characteristics of the main body of lanthanide doped nanoparticles allow these particles to rotate. For a fixed laser power, the rotational speed depends on the viscosity of the medium. Research has shown that this characteristic can be used to measure intracellular viscosity. In addition, the sufficient surface functionalization of lanthanide doped nanoparticles enables them to be used for chemical sensing.

Dyes are incorporated into polymer nanoparticles to emit light and facilitate tracking within optical traps. This article reviews the research on the dynamics of individual nanoparticles and the characterization of biological samples using particle luminescence tracking ability. It not only helps to gain a more thorough understanding of the optical and mechanical interactions between captured lasers and optical particles, but also points out the enormous potential of combining optical capture with fluorescence or scanning microscopy.

Semiconductor nanoparticles have received widespread attention due to their unique photoluminescence properties, such as tunable emission, low sensitivity to photobleaching, high quantum yield, and chemical stability. This article reviews the research progress on using optical tweezers to study and improve the luminescence performance of individual semiconductor nanoparticles. They also summarized research on using semiconductor particles as local excitation sources for cell imaging.

The fluorescence of nanodiamonds is caused by point defects in the diamond structure. Bibliographic research indicates that there are limited reports on optical capture of nanodiamonds. The first report on this topic shows that a single nanodiamond can be used as a magnetic field sensor. Later, optically captured nanodiamonds were also proven to be useful as cell thermometers.

This review article also reveals how the combination of optical capture and colloidal optical nanoparticles can be used for various applications. Despite the enormous potential of optical tweezers in the study of individual nanoparticles, this field is still in its early stages. Most works focus on application rather than filling knowledge gaps. There are still some unresolved issues.

This review summarizes the challenges faced by optical capture of nanoparticles, including the lack of precise formulas to describe optical force, uncertainty in spatial resolution, and possible sensing biases. This review is expected to promote the continuous enrichment and development of principles, technologies, equipment, and application research in this field.

Source: Laser Net


Recommandations associées
  • Chip guided beam for new portable 3D printers

    Imagine being able to carry a 3D printer with you and quickly create low-cost objects, such as fastening bicycle wheels or parts needed for critical medical surgeries. Scientists from the Massachusetts Institute of Technology (MIT) and the University of Texas at Austin have combined silicon photonics and photochemical technology to successfully develop the first chip based 3D printer, taking a cru...

    2024-06-18
    Voir la traduction
  • Reverse Modeling of 3D Scanning Reading in Hong Kong: Production Innovation in the Digital Era

    In the wave of the digital age, Hong Kong, as an international business center, constantly explores the application of new technologies in the manufacturing industry. Among them, 3D scanning and reverse modeling technology is emerging, bringing a new production innovation to the manufacturing industry. This article will explore the application of 3D scanning and reverse modeling in Hong Kong, as w...

    2024-03-30
    Voir la traduction
  • Scientists have developed the most powerful ultraviolet laser using LBO crystals

    It is reported that recently researchers from the Chinese Academy of Sciences have achieved the highest power output of 193 nm and 221 nm lasers using lithium borate (LBO) crystals. This achievement lays the foundation for the further application of the laser in deep ultraviolet (DUV) spectroscopy.The laser in DUV spectroscopy has many applications in science and technology, such as defect detecti...

    2024-04-07
    Voir la traduction
  • Coherent launches 532 nm HyperRapid NXT picosecond laser for ultra precision manufacturing of thin film solar cells

    The leader of material processing industry lasers, Cohen Corporation, announced yesterday the launch of its new HyperRapid NXT industrial picosecond laser, with a working wavelength of 532 nm and an average power of 100 W, which can achieve ultra precision manufacturing of thin film solar cells.The second generation solar cells, which are expected to achieve a leap in energy efficiency, are mainly...

    2024-01-25
    Voir la traduction
  • New, low-cost, and high-efficiency photonic integrated circuits

    The rapid development of photonic integrated circuits (PICs) has combined multiple optical devices and functions on a single chip, completely changing optical communication and computing systems.For decades, silicon-based PICs have dominated the field due to their cost-effectiveness and integration with existing semiconductor manufacturing technologies, despite their limitations in electro-optic ...

    2024-05-10
    Voir la traduction