Français

Shanghai Optics and Machinery Institute has made progress in near-field state analysis of high-power laser devices based on convolutional neural networks

160
2024-04-25 16:03:56
Voir la traduction

Recently, the research team of the High Power Laser Physics Joint Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics identified and analyzed the abnormal near-field output of the SG - Ⅱ upgrade device by using the spatial domain computing method and the deep learning model with attention mechanism in response to the requirements of real-time and effectiveness of the analysis of the multi-channel near-field output of the high power laser device. The relevant results were published in Optics and Lasers in Engineering under the title "Near field analysis of the high-power laser facility using calculated methods and a residual convolutional neural network with attention mechanism".

The physical research of Inertial Confinement Fusion (ICF) has put forward very strict requirements for the output performance and reliability of high-power laser drivers. Among them, the uniform distribution of the near-field is conducive to improving the operating flux of the system, protecting subsequent optical components, and meeting the requirements of long-term high-intensity reliable operation of the system. High power laser devices contain multiple beams of laser, and manual identification methods are not timely and effective enough. Therefore, effective methods are needed to analyze the near-field state at different times and provide timely warnings. Convolutional neural networks (CNNs) have powerful feature extraction capabilities and can be trained on historical data to meet complex and diverse task requirements.

Researchers have proposed using spatial computing methods and residual convolutional neural network models with additional attention mechanisms to preliminarily evaluate the operation of the SG-II upgrade device based on a large number of near-field images at different times. The airspace calculation method is used for batch processing of near-field images detected by CCD, and can analyze the changes in near-field distribution uniformity during the continuous operation time of the device through adjustments and contrast analysis. This algorithm automatically extracts effective near-field spot regions, which also provides a preprocessing step for images used to train convolutional neural network models. 
Convolutional neural network models are used for automatic recognition and classification of near-field image features with multiple labels, thereby achieving fundamental frequency (1) ω)  Detection of near-field state anomalies. In this work, researchers selected six features including near-field distribution uniformity, abnormal output signals, and strong diffraction rings for analysis. The classification accuracy of the model reached 93%, and the model can make real-time judgments about the above six features for any number of near-field images.

In subsequent research, as the amount of experimental data increases, researchers will refine the classification labels for abnormal features, especially similar features, to establish more robust models. This work explores the effective application of deep learning models in high-power ICF laser devices, and is expected to continue expanding the application scope of deep learning models in the future, providing intelligent analysis methods for large-scale laser devices.

Figure 1: Results of Spatial Calculation Method (a) CCD Capture Image (b) Near Field Grayscale Distribution Histogram (c) Near Field Grayscale Distribution Histogram After Removing Background (d) Binary Image After Removing Background (e) Rotated Near Field Image After Hough Transform (f) Rotated Binary Image (g) Cropped Near Field Image (h) 85% Region of Near Field Image

Figure 2 Structure of Spatial Attention Residual Convolutional Neural Network Model

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Recommandations associées
  • Intel: Has acquired most of ASML's NA extreme ultraviolet lithography equipment in the first half of next year

    According to Korean media reports, Intel has acquired most of the high numerical aperture (NA) extreme ultraviolet (EUV) lithography equipment manufactured by ASML in the first half of next year.ASML plans to produce 5 high NA EUV lithography equipment this year, all of which will be supplied to Intel.They stated that ASML has an annual production capacity of approximately 5-6 High Numerical Apert...

    2024-05-21
    Voir la traduction
  • Researchers use non classical light to achieve multi photon electron emission

    Strong field quantum optics is a rapidly emerging research topic that integrates nonlinear optoelectronic emission elements rooted in strong field physics with the mature field of quantum optics. Although the distribution of light particles (i.e. photons) has been widely recorded in both classical and non classical light sources, the impact of this distribution on the photoelectric emission proces...

    2024-05-20
    Voir la traduction
  • Breakthrough 8-channel 915nm SMT pulse laser, ushering in a new era of laser radar applications

    The 8-channel 915nm SMT pulse laser can enhance the long-range laser radar system of autonomous vehicle;An 8-channel QFN package certified by AEC-Q102, featuring high performance and efficiency, utilizing proprietary wavelength stabilization technology from AMS Osram;Based on over 20 years of experience in pulse laser technology.Shanghai, China, August 8, 2024- AMS, a leading global optical soluti...

    2024-08-09
    Voir la traduction
  • Laserline completes 70% equity acquisition of WBC Photonics

    Recently, Laserline, a leading semiconductor laser manufacturer in Germany, announced that it has completed the acquisition of a 70% stake in WBC Photonics, a Boston based laser technology expert, marking a significant strategic expansion for Laserline. Through this transaction, Laserline not only expands its product portfolio to include blue laser systems with excellent beam quality (better tha...

    2024-09-20
    Voir la traduction
  • Transforming solid-state single photon sources using multifunctional metalenses

    Quantum photonics is one of the important research directions in the quantum field, which utilizes the unique properties of light at the quantum level. The core of this field is the deterministic single photon source, which sequentially emits individual photons through spontaneous emission and is the cornerstone of quantum communication, computing, and secure encryption. However, under environment...

    2024-02-26
    Voir la traduction