Français

Laser link between European Space Agency containers and space

523
2024-02-12 20:26:15
Voir la traduction

The latest expansion of the European Space Agency's laboratory is essentially portable: this European Space Agency's mobile optical ground station is housed in a standard container and can be transported throughout Europe as needed for laser based optical communication with satellites - including NASA's Psyche mission, in space millions of kilometers away.

The station has officially become a part of the Atomic Energy Agency's Optics and Optoelectronics Laboratory and will serve as a flexible testing platform for optical communication hardware and systems. ETOGS can also support other activities that require observing the sky with telescopes or pointing lasers at the sky, such as space debris monitoring or determining orbits through laser ranging.

ETOGS consists of a standard 6-meter long container that has been customized to accommodate telescopes with a diameter of 80 centimeters in the lifting platform and climate control operator area. Laser emitters, receivers, and other required equipment can be connected to this flexible structure to serve each specific activity. The station is hauled by trucks and can be deployed anywhere needed, powered by power accessories, diesel generators, or solar cell modules.

European Space Agency optoelectronic engineer Jorge Pires explained, "The creation of this station is indeed to meet the needs of the rapidly developing optical communication community for flexible testing platforms, rather than being deployable in representative ground environments. One of the most relevant issues in optical communication is to what extent the surrounding environment affects the quality of the link, such as background light in urban areas or atmospheric turbulence caused by weather.".

When it comes to receiving signals from quantum communication systems, this is most crucial because the amount of light involved is very low, and information is transmitted through a single photon. With this station, we can truly start answering these questions by operating at many different locations. By providing our partners with such ready-made testing platforms, we support hardware validation and iteration without the high development costs of using dedicated ground stations.

Optics and quantum technology are expected to completely change connections on a global scale. By using optical pulses with frequencies much higher than radio waves, optical communication can transmit more data at a given moment. Optical communication through optical fiber cable is the foundation of modern terrestrial Internet infrastructure, but the link with satellite still depends on low frequency and low bandwidth radio waves to a large extent.

By utilizing the quantum properties of light, systems such as quantum key distribution will help protect data to a level previously unimaginable; The physical properties of light particles protect the security of encryption key exchange, enabling message transmission to resist eavesdropping by malicious actors.

Jorge added, "The 80cm telescope at this station is the baseline size for quantum key distribution on a commercial scale, so we expect the station to be used to demonstrate and validate satellite based quantum communication.".

The first operational mission of this new European Space Agency asset will be to support the deep space optical communication demonstration of NASA's planned Psyche mission in 2025.

The European Space Agency is collaborating with a European consortium and the National Observatory of Athens to develop and deploy ETOGS at Kryoneri Observatory in Greece to accommodate multi beam ground laser emitters.

Source: Laser Net

Recommandations associées
  • Ultra fast plasma for all optical switches and pulse lasers

    Plasmology plays a crucial role in advancing nanophotonics, as plasma structures exhibit a wide range of physical properties that benefit from local and enhanced light matter interactions. These characteristics are utilized in many applications, such as surface enhanced Raman scattering spectroscopy, sensors, and nanolasers.In addition to these applications, the ultrafast optical response of plasm...

    2024-03-26
    Voir la traduction
  • Export of Pentium Laser Automation Production Line to Japan

    Recently, several large trucks from the Wenzhou factory of Pentium Laser were lined up and ready to go. The high-power and high-speed laser cutting automation production line developed and produced by Pentium Laser has been strictly inspected and accepted by Japanese customers for 15 days and 24 hours of uninterrupted operation. Today, it was loaded and sent to Japan. This laser cutting automati...

    2024-12-06
    Voir la traduction
  • Laserline introduces the first blue 4 kW laser

    Laserline will once again showcase its latest laser systems for joining and deposition welding at this year's Welding & Cutting show in Hall 5. This time the focus is on the world's first blue diode laser with an output power of 4 kW, which is said to have been developed for processing copper components.Its 445 nanometer wavelength is absorbed by copper and copper alloys, which is five t...

    2023-09-06
    Voir la traduction
  • Shanghai Optical Machinery Institute has made progress in high-efficiency optical parametric amplification technology

    Recently, a joint research team composed of Sun Meizhi, associate researcher of the High Power Laser Physics Joint Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, and Tu Xiaoniu, associate researcher of the Chinese Academy of Sciences Shanghai Institute of Silicate, proposed a new configuration of cross Fabry Perot intracavity optical parametric ...

    2024-07-11
    Voir la traduction
  • Semiconductor lasers will support both TE and TM modes

    Typically, for lasers in optical communication systems, waveguide designs are used to achieve a single transverse mode. By adjusting the thickness of the surrounding area of the cladding layer and the etching depth of the ridge in the ridge waveguide device, a single mode device can be obtained. The importance of lasers is reflected in the following aspects:A chip without ridge waveguide design an...

    2023-10-20
    Voir la traduction