Français

Enlightra and DESY Hamburg developed an improved and scalable comb laser

365
2024-01-26 13:49:54
Voir la traduction

Laser technology startup Enlightra collaborates with DESY Hamburg to develop and design more stable and efficient comb lasers. This work demonstrates a microresonator with programmable synthetic reflection, providing tailored injection feedback for driving lasers. This technology has significantly improved compared to traditional self injection locking technology and can be produced using standard lithography.

A comb laser is a multi color light source with an equidistant range of 100 GHz to 1 THz. This technology has high value for the data required for artificial intelligence applications in optical communication.

One of the key aspects of the practicality of comb lasers is their color purity. Although lasers appear to have very pure colors, in most cases, the beam is composed of many very similar colors with different tones. In applications such as optical communication, it is hoped that a laser can emit many very pure different colors. This is where comb lasers come in handy.

Self injection locking has always been a standard method to improve the purity of comb lasers. This method uses a ring resonator to filter out noise. Through Rayleigh backscattering, light is reflected back from random defects within the ring and sent back to the laser for injection locking.

"The problem with relying on random defects is that they can rely on color, and they are not very strong," said John Jost, co-founder of Englightra and one of the authors of the paper. "There are some limitations, and you would like to send more light back to the laser, as this is very helpful for injection locking."

One of the main advances in this study is the design of how light scatters inward and backward in a ring resonator. They achieved this goal by designing the inner surface of the ring, which only strongly scatters a specific color. Jost told Photonics Media that when light moves around the ring, it feels the pattern and can send more light than usual for injection locking. The author conducted various tests using different customized nanostructured ring resonators. They use semiconductor laser tubes to dock and couple to photonic chips with ring resonators. This technology has been demonstrated in the C-band, but it is equally effective in all telecommunications frequency bands. The actual resonator is embedded in the integrated photonic chip, with a silicon nitride photonic crystal ring resonator embedded in the silicon dioxide cladding.

"The photonic integrated circuits used in this work were manufactured in industrial foundries, so the technology is ready to scale up," Jost said. "The ability to design light scattering has opened a whole new door to more advanced designs, allowing us to customize comb shaped laser spectra to our needs in an unprecedented way."

Laser can be combined with various photonic integrated circuits. For example, it can support fast optical I/O units or optical field programmable gate arrays. This technology will benefit data intensive applications such as generative artificial intelligence, as well as new types of decomposed computers and memory architectures.

According to Jost, he and his team have more ideas than they may have tried.
The study was published in Nature Photonics.

Source: Laser Net

Recommandations associées
  • First time! Significant progress has been made in low repetition rate fully polarization maintaining nine cavity fiber lasers

    Recently, the research team of the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, reported for the first time a low repetition frequency full polarization maintaining 9-shaped cavity fiber laser at 915 nm. The relevant research results were published in Optics Express under the title "Low repetition rate 915 nm ...

    2024-05-07
    Voir la traduction
  • The University of California has developed a pioneering chip that can simultaneously carry lasers and photonic waveguides

    A team of computer and electrical engineers at UC Santa Barbara, in collaboration with several colleagues at Caltech and another colleague at Anello Photonics, has developed a first-of-its-kind chip that can carry both laser and photonic waveguides. In a paper published in the journal Nature, the team describes how they made the chip and how it worked during testing.With the advent of integrated c...

    2023-08-10
    Voir la traduction
  • Researchers propose NeuFlow: an efficient optical flow architecture that can solve high-precision and computational cost issues

    Real time and high-precision optical flow estimation is crucial for analyzing dynamic scenes in computer vision. Although traditional methods are fundamental, they often encounter issues with computation and accuracy, especially when executed on edge devices. The emergence of deep learning has driven the development of this field, providing higher accuracy, but at the cost of sacrificing computati...

    2024-03-23
    Voir la traduction
  • Dehaha launches laser cutting integrated machine screw compressor

    The revolution in the laser cutting industry is in full swing. Like the laser cutting machine industry, China's air compressor industry has developed rapidly in the past 20 years and has undergone iterative progress in response to the huge demands of various industries. It has gradually achieved a process from imitation to independent innovation.Recently, DHH Compressor has launched its latest inn...

    2024-05-27
    Voir la traduction
  • Amplitude's 2024 performance shows steady growth

    In 2024, Amplitude's performance will continue to maintain steady growth, thanks to our continuous innovation in femtosecond laser technology and deep market expansion The application performance of high-power femtosecond lasers in precision microfabrication and industrial manufacturing such as semiconductors is particularly impressive, "said Ruan Xia, Sales Director of Amplitude Laser Solutions D...

    02-17
    Voir la traduction