Français

Assisting Gas Mixing to Promote the Development of Fiber Laser Technology

832
2024-01-11 14:02:08
Voir la traduction

Just ten years ago, fiber laser cutting machines were considered experts in thin plates. The stores quickly realized that they had to invest in them to compete, at least by reducing their instrument materials. For high-quality sheet metal cutting, CO2 laser is still the way to go. Of course, fiber lasers can cut thicker blanks, but the quality is not very good, and their speed advantage almost disappears when cutting very thick sheets. Today, the world has undergone changes.

Assisted gas technology has made significant progress in just a few years and is one of the important contributors to the rapidly changing field of laser cutting. The lens material and its design have been improved, and the cutting head and nozzle have also been improved. It can be seen that modern fiber laser beam transmission systems are calmly dealing with enormous photon power. 20. Ultra high power lasers of 30 or even 50 kW can now quickly and cleanly slice thick plates.

"Clean" is an effective word here. The economic significance of lasers can be attributed to the cost of each component. Nowadays, high-power lasers are flourishing in the field of precision sheet metal cutting. If a part used to be plasma cut and then burrs or precision machined on a milling machine, it may now be able to be completed on a fiber laser.

Auxiliary gas mixing helps achieve all of this. Even the thickest sheet metal today is not processed with oxygen, but with a mixture of nitrogen and oxygen. The auxiliary airflow is still mainly composed of nitrogen gas, which is an inert gas that can expel molten metal from the incision, but a small amount of oxygen provides chemical reactions, helping to bring the incision to the bottom to obtain a slag free edge.

The bracket between the surface and nozzle has been reduced to almost non-existent, all in order to allow the laminar flow of auxiliary gas through the incision, so that the nitrogen oxygen mixture can work as expected. In the field of precision sheet metal cutting, excessive auxiliary gas turbulence is the enemy of clean laser cutting.

The early application of gas mixing appeared more than a decade ago, not for thick steel, but for slag free cutting of aluminum. Liberty Systems, headquartered in Pewoki, Wisconsin, is a nitrogen generation and gas mixing supplier. Steve Albrecht, the president of the company, recalled that in the early 2010s, when nitrogen oxygen mixtures were used, they were not for fiber lasers, but for cutting 0.125 inch thick aluminum in a 4 kW CO2 system.

"There is an oxide layer on the top of aluminum," Albrecht said. "You need to burn it to prevent any slag or burrs. As application engineers have discovered, nitrogen assisted airflow containing a certain amount of oxygen helps eliminate the difficult to remove scum on the edges of laser cut aluminum.".

"As a softer material, aluminum has some unique features in laser cutting," said David Bell, President of Witt Gas Control in Alphalita, Georgia. "Gas mixing is very helpful. If you cut aluminum with oxygen, you will burn it. If you cut it with nitrogen, you will get edge stripes. Mixing the two for cutting will give you a cleaner cut.".

As fiber lasers begin to dominate the market and the available power continues to grow, auxiliary gas strategies continue to evolve. Application engineers began experimenting with different combinations of nitrogen and oxygen.
As Albrecht recalled, when engineers began to achieve good results when the oxygen content approached 20%, it opened the door to using ultra dry air for cutting. This has saved manufacturers a lot of money, especially considering the amount of auxiliary gas consumed by early fiber lasers.

"When the first batch of 6 kW and 8 kW optical fibers were introduced," Albrecht said, "that was when ultra dry air cutting truly began to take off.".

However, with the continuous increase of fiber laser power, the auxiliary gas strategy has changed. The cutting conditions for the highest power fiber laser are established around a precise nitrogen oxygen mixture with low oxygen content.

Original equipment manufacturers of laser cutting machines are beginning to experiment with different nozzles and methods to achieve smooth laminar flow of auxiliary gas around stronger beams. Optimized nozzle design. Some nozzle geometries capture gas at the top of the metal. Other technologies use air curtains around the auxiliary gas column. As Albrecht explained, these methods depend on the machine manufacturer, but everyone is moving towards the same goal: achieving optimal cutting quality with the lowest single piece cost. This includes auxiliary gas utilization, especially finding the optimal mixture to improve cutting quality and speed.

Source: Laser Net

Recommandations associées
  • Observation of laser power changes in ultrafast protein dynamics

    When researchers at the Max Planck Institute of Medicine conducted their first ultrafast X-ray crystallographic experiment on myoglobin in 2015, they were not aware that they had conducted the wrong experiment. By increasing the power of X-ray free electron lasers to ensure usable diffraction patterns, lead researcher Ilme Schlichting said that they "suddenly entered the wrong [excited] state with...

    2024-02-28
    Voir la traduction
  • Lumentum Holdings changes CEO

    On February 3, 2025, Lumentum Holdings has appointed Michael Hurlston as its President, CEO, and Director, effective from February 7. Hurlston replaces Alan Lowe, who has been serving as the company's President and CEO since 2015. Lowe will continue to serve as a member of Lumentum's board of directors and as a consultant to the company.Lumentum is a major supplier of high-speed optical transceive...

    02-06
    Voir la traduction
  • French silicon optical company Scintil realizes the integration of III-VI DFB lasers and amplifiers with standard silicon optical technology

    Recently, French silicon photonics company Scintil Photonics announced an exciting collaboration, successfully integrating III-V-DFB lasers and amplifiers with standard silicon photonics technology in the production of Israeli semiconductor company Tower Semiconductor. This milestone collaboration marks a crucial step for Scintil in strengthening its supply chain, bringing new possibilities to com...

    2024-03-05
    Voir la traduction
  • IPG Q1 revenue of $252 million, co-founder and new CEO of Jiaobang

    Recently, IPG Photonics, a high-performance fiber laser supplier in the United States, released its first quarter financial report as of March 31, 2024.The financial report shows that IPG Photonics revenue in the first quarter was 252 million US dollars, a year-on-year decrease of 27%; The net profit was 19 million US dollars, a year-on-year decrease of 75%. The change in foreign exchange rate res...

    2024-05-07
    Voir la traduction
  • The construction of Hefei Advanced Light Source Project held a launch ceremony, expected to be completed and released in 5 years

    Recently, in the Future Science City of Hefei City, Anhui Province, the National Major Science and Technology Infrastructure Project and Supporting Projects of Hefei Advanced Light Source announced the start of construction, with a planned land area of approximately 656 acres. The first phase of the project is expected to be completed by September 2028.After completion, it will become an internati...

    2023-09-23
    Voir la traduction