Français

Scientists from the SLAC National Accelerator Laboratory in the United States have launched the world's most powerful X-ray laser

493
2023-11-17 14:08:46
Voir la traduction

Scientists at the SLAC National Accelerator Laboratory have launched the world's most powerful X-ray laser, which will be used for in-depth atomic and molecular research.

It is a significant upgrade to its predecessor, as its brightness has increased by 10000 times.
The upgraded laser facility also uses superconducting accelerator components, allowing it to operate at low temperatures near absolute zero degrees Celsius.

Scientists from a high-tech facility on the West Coast of the United States have launched the world's most powerful X-ray laser for the first time. With these ultra bright X-ray pulses, they will conduct measurements, which will enable us to understand the atomic and molecular worlds.

The LCLS-II facility is an upgraded version of the linear accelerator coherent light source. It is located at the SLAC National Accelerator Laboratory of the US Department of Energy, near Stanford University in Menlo Park, California. LCLS-II is a so-called free electron laser, which means it accelerates the electron beam to near the speed of light and then sends the electron beam through a series of magnetic fields. These magnetic fields cause the path of electrons to oscillate, and due to these oscillations, electrons emit very strong X-rays, which can be used to image molecules and other things and observe how the atoms inside interact.

LCLS-II can emit up to 1 million X-ray pulses per second, 8000 times more than early LCLS lasers. When the increased pulse rate is combined with an increase in the number of electrons per pulse, the brightness of the new facility is more than 10000 times that of its predecessor.

Each pulse is very short. For high-energy X-rays, the pulse range is 10 to 50 femtoseconds; For low energy X-rays, the pulse can be stretched to 250 femtoseconds. It can also generate very short pulses, although in such a short period of time, each pulse is not as bright as usual.

With such short wavelengths, short pulses, and rapid repetition, scientists can use this facility to observe the occurrence of chemical reactions. Essentially, each pulse can image the configuration of the atoms involved in the reaction, and then link individual images together, much like a molecular clay film. As early as 2018, the LCLS facility was able to produce a movie about the chemical processes that occur in human vision and photosynthesis. The entire process only takes 1000 femtoseconds.

More broadly, the LCLS-II facility will be able to withstand up to one angstrom. This ability will enable researchers to study many different atomic processes, from those in biological systems to those in photovoltaic and fuel cells. Laser will also help illuminate superconductivity, ferroelectricity, and magnetism.

A very cool technology
One of the key components of upgrading is the installation of revolutionary technologies. Although early accelerators operated at room temperature, the upgraded LCLS-II used superconducting accelerator components, which allowed it to operate at low temperatures near absolute zero. LCLS-II also has better magnets to swing the electron beam.

Although LCLS-II has just started operating, the success of early LCLS accelerators has given researchers optimism. More than 3000 scientists have used the facility and published over 1450 publications. Time will reveal any new insights that this powerful laser possesses.

Source: Laser Network

Recommandations associées
  • Researchers have discovered new multiphoton effects in quantum interference of light

    An international research team from Leibniz University in Hanover and Strathclyde University in Glasgow overturned the previous hypothesis about the influence of multiphoton components in the thermal field and the interference effect of parameterized single photons. The journal Physical Review Letters published the team's research."We have demonstrated through experiments that the interference eff...

    2024-01-24
    Voir la traduction
  • Top management changes at Laser Photonics Corp., a US laser equipment manufacturer

    Recently, Laser Photonics Corp. (LPC), a Nasdaq listed equipment developer, announced that it has appointed John T. Armstrong as its new Executive Vice President. Before assuming his position at LPC, Armstrong served as Vice President of Astronics Test Systems, a subsidiary of Astronics Corporation, a global leader in advanced technology and products in critical mission areas such as aerospace a...

    2024-11-20
    Voir la traduction
  • Shanghai Optical Machinery Institute has made progress in laser assisted connection of metal carbon fiber composite heterojunction materials

    Recently, the research team of Yang Shanglu from the Laser Intelligent Manufacturing Technology R&D Center of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made new progress in the laser assisted connection of metal carbon fiber composite heterostructure joints.The team used an adjustable flat top rectangular semiconductor laser as a heat source to achieve...

    2023-09-01
    Voir la traduction
  • NASA's laser reflector instrument helps to accurately locate Earth measurements

    The most famous use of GPS satellites is to help people understand their location, whether it is driving cars, ships or planes, or hiking in remote areas. Another important but little-known use is to distribute information to other Earth observation satellites to help them accurately locate measurements of our planet.NASA and several other federal agencies, including the US Space Force, the US Spa...

    2023-12-12
    Voir la traduction
  • American scientists use light technology to control hypersonic jet engines

    According to the website "interesting engineering" on July 29th, a new study funded by the National Aeronautics and Space Administration (NASA) has revealed for the first time that the airflow in supersonic combustion jet engines can be controlled through optical sensors. This study was conducted by researchers from the School of Engineering and Applied Sciences at the University of Virginia.When ...

    2024-07-31
    Voir la traduction