Français

SPIE Optics and Photonics 2025: Plenary Session Evaluation of Organic Materials for Optoelectronics

700
2025-08-06 16:23:18
Voir la traduction

The use of organic materials in photonics has given rise to many device innovations for applications in sensing, semiconductors, lasers, and more. The Organic Photonics + Electronics plenary session at SPIE Optics + Photonics 2025, taking place through 7 August in San Diego, California, sampled some current research efforts in this subfield, and looked at developments on the horizon.


Ruth Shinar delivers her plenary talk


Triplet-to-singlet upconversion

The first speaker,Chihaya Adachi—a professor at Kyushu University and one of the world’s leading researchers on OLEDs—discussed recent advances in organic photonics, focusing on triplet-to-singlet upconversion mechanisms, and the need for improvements in blue emitters for commercial uses. He discussed thermoluminescent dosimeter (TLD) optimization for higher performance and longer device lifetimes, as well as the potential for these materials in, for example, organic solar cells.

Adachi’s presentation also introduced the concept of organic thermoelectric devices using a p-n junction to generate holes and electrons. The device architecture, he said, includes a charge generation layer and a transport layer. Experiments under dark conditions show small “quite promising,” measurable thermoelectric behavior, indicating potential applications for things like power-generation textiles and smart contact lenses.

Organic photodetectors and OLEDs

Outgoing symposium chair, Zakya H. Kafafi of Lehigh University, introduced the next speaker, Ruth Shinar of Iowa State University of Science and Technology. Kafafi noted, “I am Egyptian by birth and American by choice,” whereas Shinar and her spouse are originally from Israel. “So, these are two of my friends and colleagues I have worked with for many, many years,” she said, “and it’s an example of science without borders.”

Shinar’s presentation included an overview of organic photodetectors (OPD) and OLEDs in devices like sensors, spectrometers-on-a-chip, and devices that could also incorporate microfluidic channels. She noted their current use and potential future in optical sensing devices, including devices that are compact, field deployable, and wearable, and suited for applications that range from environmental monitoring to medical diagnostics.

“The big question, of course, is why OLEDs?” Shinar said. The answer: “The devices can be made on almost every substrate you can think of,” including plastics that are bendable and stretchable.”

Inkjet printing of opto-electronic devices

The third speaker for the organic photonics and electronics plenary was Emil J.W. List-Kratochvil of Humboldt University, who spoke about the evolution of his work with ink-jet printing technology and its ongoing promise for optoelectronic devices, including light-emitting devices and solar cells.

As an additive technology, he said, ink-jet printers allow for rapid prototyping and hybrid integration of components, though he cautioned against trying to print everything on a device so as to avoid printing components whose requirements would be too time consuming. “We have shown that heterogenous, homogenous integration is the way to go.”

List-Kratochvil discussed the various inks developed for printing opto-electronic devices, including metal halides and perovskites. Today’s challenges, he said, include printing layers of different inks which require precise timing of deposition and drying so that new layers do not disrupt those already set down on the substrate.

Current and future directions for research, he said, include combining printing with automated testing, integrating printed solar cells, and scaling print size. Finally, he mentioned printing of RGB devices, noting challenges in achieving high-performance in blue-emitting perovskites.

Source: optics.org

Recommandations associées
  • Nikon launches COOLSHOT 20i GIII laser rangefinder with two measurement display modes: golf and actual distance

    Nikon Vision, a subsidiary of Nikon Corporation, is pleased to announce the launch of the COOLSHOT 20i GIII laser rangefinder for golfers, which is Nikon's small and lightweight model in the COOLSHOT series.While maintaining the lightweight and compact size of the COOLSHOT 20i GII, the new model notifies users through brief vibrations that the distance to the flagpole has been measured.When measur...

    2024-03-27
    Voir la traduction
  • Shanghai Optical Machinery Institute has made progress in high-efficiency optical parametric amplification technology

    Recently, a joint research team composed of Sun Meizhi, associate researcher of the High Power Laser Physics Joint Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, and Tu Xiaoniu, associate researcher of the Chinese Academy of Sciences Shanghai Institute of Silicate, proposed a new configuration of cross Fabry Perot intracavity optical parametric ...

    2024-07-11
    Voir la traduction
  • San’an and Inari acquire Lumileds for $239 million

    San’an Optoelectronics, an LED chip manufacturer, based in China, and Inari Amertron Berhad, a Malaysian company that provides outsourced semiconductor assembly and test (“OSAT”) services to the semiconductor industry, are to acquire Lumileds Holding B.V. and its European and Asian subsidiaries (“Lumileds International”). Lumileds is based in Schiphol, The Netherlands.The all-cash deal is valued a...

    08-13
    Voir la traduction
  • University of Science and Technology of China realizes quantum elliptical polarization imaging

    Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the research of quantum elliptical polarization imaging. The research group of Professor Shi Baosen and Associate Professor Zhou Zhiyuan combined high-quality polarization entangled light sources with classical polarization imaging technology to observe the bir...

    04-14
    Voir la traduction
  • SPIE Optics and Photonics 2025: Kyle Myers from Puente elected as SPIE Chair

    The founder and principal of Puente Solutions Kyle J. Myers has been elected to serve as the 2026 Vice President of SPIE, the international society for optics and photonics. With her election, Myers joins the SPIE presidential chain. She will serve as president-elect in 2027, and as the Society’s president in 2028. Newly-elected: Myers, McNally, Rubinsztein-Dunlop, Wade, Medicus, and ErdmannTh...

    08-08
    Voir la traduction