Français

Scientists simulate the conditions that allow photons to collide with photons by using lasers

464
2023-08-11 15:15:06
Voir la traduction

As far as quantum physics is concerned, one of the most striking predictions is that matter can be produced entirely from light (i.e., photons). Pulsars are an example of an object capable of achieving this feat.

In a recent study reported in the journal Physical Review Letters, a research team led by scientists at Osaka University simulated the conditions that allow photons to collide with photons just by using lasers.

The ease of setup and comfort of implementation at the currently available laser intensities make it a promising candidate for experimental implementation in the near term.

Photon to photon collisions are theorized to be the fundamental method of creating matter in the universe, derived from Einstein's famous equation E=mc 2. In fact, scientists have created matter indirectly through light: through the high-speed acceleration of metal ions such as gold to bind to each other.

At such high speeds, each ion is surrounded by photons, and as they skim past each other, matter and antimatter are created. However, due to the need for extremely high power lasers, it is difficult to experimentally produce substances in modern laboratories using only lasers.

Simulating how such a feat would be achieved in the lab would be an experimental breakthrough, and one that scientists are hoping to achieve.

Sugimoto added, "The collider contains dense gamma rays that are ten times denser than electrons in a plasma and a million times more energetic than photons in a laser."

The photon-photon collision in the collider produces an electron-positron pair, which is accelerated by the plasma electric field generated by the laser. This produces a positron beam.

Dr Vyacheslav Lukin, program director at the National Science Foundation, which supported the work, said: "This research demonstrates a potential way to explore the mysteries of the universe in a laboratory setting. The future possibilities for high-power laser facilities today and tomorrow become even more interesting."

The application of this work to Star Trek's fictional matter-energy conversion technology is still only fictional. However, the work could help to experimentally validate theories of the universe's composition, and may even help to figure out early unknown physics.

Source: Laser Network



Recommandations associées
  • Single photon avalanche diode for millimeter level object recognition using KIST

    LiDAR sensors are crucial for implementing modern technologies such as autonomous driving, AR/VR, and advanced driving assistance systems. For example, more accurate shape detection in AR/VR devices and smartphones depends on the improved range resolution of medium and short range LiDAR. This requires a single photon detector with improved timing jitter performance.LiDAR calculates the distance an...

    2024-02-03
    Voir la traduction
  • Researchers have placed photon filters and modulators on standard chips for the first time

    Researchers at the University of Sydney combined photon filters and modulators on a single chip, enabling them to accurately detect signals on the broadband RF spectrum. This work brings photonic chips closer to one day, potentially replacing larger and more complex electronic RF chips in fiber optic networks.The Sydney team utilized stimulated Brillouin scattering technology, which involves conve...

    2023-12-26
    Voir la traduction
  • Strategy Networks Utilizes Ekinops for Optical Network Upgrade

    Strata Networks is one of the fastest growing communication cooperatives in Utah, and has chosen Ekinops360 from Ekinops as the platform to upgrade its optical transmission network.Strata is headquartered in Roosevelt, Utah, with a network spanning the Uintah Basin, the Vasatch Front, and Denver. The cooperative continues to expand and improve its fiber optic footprint to differentiate its telepho...

    2023-11-21
    Voir la traduction
  • Comparison of Blue and Infrared Wavelength in Pure Nickel Laser Deep Fusion Welding Process

    It is reported that researchers from BIAS Bremer Institution f ü r angewandte Strahltechnik GmbH in Germany have reported a comparative study of laser deep penetration welding processes for pure nickel using blue and infrared light wavelengths. The related research was published in Welding in the World under the title "Process comparison of laser deep penetration welding in pure nickel using blue ...

    2024-08-13
    Voir la traduction
  • Professor Hu Yanlei from the University of Science and Technology of China, Nat Commun Preparation of Durable Janus Thin Films with Mode Switching by Femtosecond Laser

    Janus film is widely used in fields such as oil-water separation, water mist collection, and wearable patches due to its unique transmembrane directional water transport function. The function of traditional Janus thin films comes from the thickness direction of microchannels and single-sided chemical coating modifications (single-sided hydrophilic and hydrophobic modification of hydrophobic and h...

    2024-02-22
    Voir la traduction