Français

The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan

664
2023-10-28 10:16:56
Voir la traduction

The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan. The first advanced attosecond laser facility in China will have 8 beam lines landing in Dongguan.

Laser enjoys the reputation of being the "fastest knife," "most accurate ruler," and "brightest light," among others. As an important research direction in the laser field, ultrafast laser has always been a research focus of international scientific and technological attention.

On October 26th, the first Ultrafast Laser Application Development Conference hosted by the China Optical Engineering Society opened at the Songshan Lake Materials Laboratory in Dongguan. Nearly 500 renowned academicians, experts, and enterprise representatives from the laser industry have jointly discussed the development trends, technological applications, and cutting-edge developments of ultrafast laser technology through technical exchanges, industry forums, demand docking, project roadshows, and other forms, promoting the high-quality development of the ultrafast laser industry.

"This year's Nobel Prize in Physics was awarded to scientists in the field of attosecond laser, which fully reflects the important position in the field of ultrafast laser science and technology." Wang Lijun, chairman of the conference and academician of the CAS Member, said that ultrafast lasers represented by picosecond and attosecond have broad application prospects in new generation information technology, additive manufacturing, aerospace, new energy vehicles, biomedicine and other fields. In this context, the first Ultrafast Laser Application Development Conference emerged.

At the opening ceremony, Wang Weihua, an academician of the CAS Member and director of the Songshan Lake Materials Laboratory, revealed that the Songshan Lake Materials Laboratory would jointly build the first advanced attosecond laser facility in China with the Institute of Physics of the Chinese Academy of Sciences and the Xi'an Institute of Optics and Mechanics, of which eight beam line construction tasks would be landed in Dongguan.

At present, the Songshan Lake Materials Laboratory has established the Ace Science Center, introducing the Chief Scientist Wei Zhiyi, and gathering a large number of outstanding researchers and engineers from both domestic and international sources. It is hoped that in the future, the laboratory can build a research center for ultrafast matter science, relying on large facilities such as China's scattered neutron source in the surrounding area to achieve world-class results in energy materials, information materials, and other fields.

Within two days, the conference will focus on two major topics: ultrafast laser technology and industry, and hold over 20 special seminars or reports to jointly explore forward-looking ideas and innovative achievements in the new situation, as well as how capital, technology, and market can promote the development of the laser industry and other hot topics.

At the same time, the conference will take multiple measures to jointly assist in the transformation and implementation of achievements, inviting leading enterprises at all levels of the industrial chain, key research teams, universities and research institutes, etc. to showcase outstanding scientific and technological achievements and application cases. Multiple technical exchanges, project roadshows, talent recruitment, docking negotiations, and other activities will also be held on-site.

Source: Southern Daily

Recommandations associées
  • Shanghai Optics and Fine Mechanics Institute has made progress in the new holographic imaging technology of frequency domain direct sampling

    Recently, a research team from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new holographic imaging technology using frequency domain direct sampling. The relevant results were published in Optics Letters under the title of "Fourier inspired single pixel holography".Digital holography is a tech...

    03-20
    Voir la traduction
  • Dublin City University has successfully tested the laser components of the next generation space navigation atomic clock

    The team collaborated with Eblana Photonics and Enlightra to showcase for the first time a new caliber laser, which will enable atomic clocks to be more efficient and compact for future satellite missions.This innovation addresses the key needs identified by the European Space Agency, which is the leading organization for the next generation of space navigation systems. This work was recently publ...

    2023-09-22
    Voir la traduction
  • DR Laser releases its 2024 semi annual report, achieving dual growth in revenue and profit

    A few days ago, DR laser released 2024 half-yearly report, the company realized operating income of 906 million yuan in the first half of the year, a year-on-year increase of 34.40%; net profit of 236 million yuan, a year-on-year increase of 35.51%. For the reasons of performance growth, DR laser said in the half-yearly report, the company's first half of the order continued to acceptance brough...

    2024-08-23
    Voir la traduction
  • Researchers Obtaining Scientific Returns from Raman Spectroscopy for External Bioexploration Using Lasers

    We investigated the potential of laser selection in a wide optical range from ultraviolet to visible light, and then to infrared (excitation wavelengths of 325, 532, 785, and 1064 nm), in order to combine and analyze extreme microorganisms related to Earth (such as Cryptomeria elegans, cold floating nematodes, and circular green algae), carbon water compound molecules, as well as simulated mineral...

    2023-10-23
    Voir la traduction
  • Developing nanocavities for enhancing nanoscale lasers and LEDs

    As humanity enters a new era of computing, new small tools are needed to enhance the interaction between photons and electrons, and integrate electrical and photon functions at the nanoscale. Researchers have created a novel III-V semiconductor nanocavity that can limit light below the so-called diffraction limit, which is an important step towards achieving this goal.In the journal Optical Materi...

    2024-01-29
    Voir la traduction