Français

Fraunhofer ILT has developed a process for forming hard material components using USP laser technology

110
2025-10-17 10:32:57
Voir la traduction

Tools made of hard materials are very wear-resistant, but the tools used to produce these tools are prone to wear and tear. Laser tools are the solution. Researchers at the Fraunhofer Institute for Laser Technology (ILT) have developed a process chain that can use ultra short pulse (USP) lasers to shape and polish hard material components without the need to replace clamping devices.

Drills, milling heads, rollers, and even punch inserts made of ceramic hard materials not only bite into the workpiece, but also last significantly longer. Yet the same wear resistance that makes them so durable in production becomes a major challenge during their manufacture. The tools used to shape and finish them find the mixed-carbide hard metals, cermets, and ceramics a tough nut to crack — and wear rates are correspondingly high when mechanical processing methods are used.

 



Butterfly effect


USP lasers work where mechanical processes flag

This is different with ultrashort laser pulses. Even commercially available USP lasers with a power of 20 to 40 W are capable of efficiently removing the hard materials used in toolmaking. The material vaporizes where their high-energy pulses – lasting just a few picoseconds – hit the surface. Since this happens at frequencies in the megahertz range, laser material ablation reaches surface rates of up to 100 cm2 per minute.

But the potential of USP processing is not limited to forming materials by vaporizing them. Researchers at the ILT have developed a process chain in which the same USP laser not only forms and structures via ablation, but also subsequently polishes the tool surfaces.

“The USP laser is a universal tool we use to conduct various processing steps, sometimes in the same clamping operation,” said Sönke Vogel, team leader for 3D Structural Ablation at the ILT, who has been driving the process forward together with Astrid Saßmannshausen, team leader for Structuring of Transparent Materials.

The key to linking the process steps lies in the parameterization of the laser: While material is ablated with high pulse energy and a low repetition rate, the opposite is true for polishing. The USP laser introduces energy into the surface of the workpiece at a pulse frequency of up to 50 MHz, where this energy accumulates and only melts the top 0.2–2.0 µm.
The material does not vaporize, but forms a molten film that smooths itself out due to surface tension and solidifies as it cools. The surface properties can also be controlled via the process control. “With USP laser polishing, for example, it is possible to smooth out micro-irregularities while retaining macroscopic structures,” said Saßmannshausen.

In addition, the laser process makes it possible to polish complex 3D surfaces with micrometer precision. Specific areas can be selectively treated to adjust surface properties locally or to finish only the necessary zones — saving time in the process.

 


Mold tool: first USP-structured, then polished with the same laser


Efficient hard material machining

Depending on the process requirements, laser polishing achieves surface rates of ten to 100 cm2 per minute, which is almost on par with the surface rates of the preceding material ablation. “The combination of both processes with a laser in the same clamping operation enables companies to expand their range of services with existing USP lasers or to significantly accelerate the amortization of a new purchase,” said Saßmannshausen.

Above all, however, it is suitable for replacing mechanical processes for machining hard materials, thus putting an end to the sometimes immense tool wear involved in their manufacture. This not only reduces costs, but also specifically improves resource and energy efficiency in practice.

Source: optics.org

Recommandations associées
  • 20 million dollars! Undersea fiber optic agreement reached, fully operational by 2026

    Recently, Confluence Networks LLC has announced a long-term partnership agreement with Laser Light Communications Inc., a developer and provider of software controlled optical network services.According to the agreement, Laser Light will adopt Confluence-1 submarine fiber optic network, which Confluence Networks is about to launch, as the core part of its global network. The protocol will last for...

    2024-05-24
    Voir la traduction
  • Laser giant announces launch of new fiber laser platform

    Recently, Coherent Corp. announced the launch of the EDGE FL TM high-power fiber laser series, tailored specifically for cutting applications in the machine tool industry. The power levels of the EDGE FL series range from 1.5kW to 20kW, redefining the balance between value and performance to meet the growing demand for high-power, reliable laser sources in fiber laser cutting.With the increasing d...

    2024-10-23
    Voir la traduction
  • Scientists demonstrate effective fusion "spark plugs" in groundbreaking experiments

    Researchers from the Laser Energy Laboratory at the University of Rochester led the experiment and demonstrated an efficient "spark plug" for direct driving of inertial confinement fusion. In two studies published in the journal Nature Physics, the team shared their findings and detailed the potential to expand these methods with the aim of successful nuclear fusion in future facilities.LLE is the...

    2024-03-04
    Voir la traduction
  • Multi functional materials for solar cells and organic light-emitting diodes to achieve high performance and stability

    Through joint research, a team developed a 4-amino-TEMPO derivative with photocatalytic performance and successfully used it to produce high-performance and stable fiber like dye sensitized solar cells (FDSSCs) and fiber like organic light-emitting diodes (FOLEDs). This paper was published in the journal Materials and Energy Today.The developed 4-amino-TEMPO derivatives have the characteristic of ...

    2024-06-03
    Voir la traduction
  • Single photon avalanche diode for millimeter level object recognition using KIST

    LiDAR sensors are crucial for implementing modern technologies such as autonomous driving, AR/VR, and advanced driving assistance systems. For example, more accurate shape detection in AR/VR devices and smartphones depends on the improved range resolution of medium and short range LiDAR. This requires a single photon detector with improved timing jitter performance.LiDAR calculates the distance an...

    2024-02-03
    Voir la traduction