Français

Scientists at St. Andrews University have made significant breakthroughs in compact laser research

835
2023-10-04 14:21:35
Voir la traduction

Scientists at St. Andrews University have made significant breakthroughs in compact laser research after decades of hard work.


Laser is widely used in fields such as communication, medicine, measurement, manufacturing, and measurement around the world. They are used to transmit information on the internet, for medical purposes, and even in facial scanners on mobile phones. Most of these lasers are made of rigid and brittle semiconductor crystals such as gallium arsenide.

Organic semiconductors are a relatively new type of electronic material. They have flexibility, are based on carbon and emit visible light, making the manufacturing of electronic devices simple. They are now widely used in OLED (Organic Light Emitting Diode) screens in most mobile phones.

One limitation of organic semiconductor lasers is that they typically require another laser to power them. For 30 years, researchers have been working hard to overcome this limitation, so scientists at the University of St. Andrews have recently developed an electrically driven organic semiconductor laser, which is particularly important.

The breakthrough achieved by the team, published in the journal Nature, first produced OLEDs with world record light output, and then tightly integrated them with polymer laser structures. This new type of laser emits a green laser beam composed of short light pulses.


At present, this is mainly a scientific breakthrough, but with future development, lasers may be integrated with OLED displays and allow communication between them, or used for spectroscopy to detect diseases and environmental pollutants.

Schematic diagram of the structure of an electrically driven organic semiconductor laser


Professor Ifor Samuel commented, "Manufacturing electrically driven lasers using organic materials is a huge challenge for researchers around the world. Now, after years of effort, we are pleased to have produced this new type of laser.


Professor Graham Turnbull added, "We hope that this new type of laser will consume less energy during the manufacturing process and will produce visible spectrum lasers in the future.

Source: Laser Network

Recommandations associées
  • Lidar: Entering the Golden Age of Fission Growth

    With the global transition of autonomous driving from L2 to L3+, in the battle between LiDAR and pure visual perception routes, LiDAR is redefining the industry landscape at an astonishing pace of technological evolution and quietly building a new industrial ecosystem in the era of intelligent travel. Before the end-to-end model of autonomous driving became mainstream, there were many discussion...

    03-21
    Voir la traduction
  • GlobalFoundries collaborates with Corning to develop co packaged optical devices

    Chip manufacturer GlobalFoundries (GF) has partnered with fiber optic giant Corning to provide co packaged optical (CPO) interconnects for artificial intelligence data centers.The firms say that Corning’s “GlassBridge” technology, a glass-waveguide based edge-coupler compatible with the v-grooves used in GF’s silicon photonics platform, is wanted for high-bandwidth, power-efficient optical links.“...

    10-10
    Voir la traduction
  • Progress in research on neodymium doped strontium aluminate lanthanum magnesium laser crystals by Shanghai Optics and Machinery Institute

    Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of Nd: ASL (Sr0.7Nd0.05La0.25Mg0.3Al22.7O19) laser crystals, and the related achievements were published in Infrared Physics&Technology under the title of "Tunable laser operations on Nd doped cont...

    2024-04-17
    Voir la traduction
  • Juguang Technology launches miniaturized high-power semiconductor laser stack GS09 and GA03

    In today's technology field, Juguang Technology released two highly anticipated high-power semiconductor lasers on December 13th: GS09 and GA03. These two products are leading the innovation wave in the laser industry with their miniaturized design, excellent thermal management capabilities, and extensive customization flexibility.GS09 revolutionizes chip spacing by compressing the width of the st...

    2023-12-15
    Voir la traduction
  • Visual platforms bring new perspectives to optical research

    The advanced testing platform of Liquid Instruments is now available for Apple Vision Pro, providing optical researchers with the first interactive 3D testing system. By integrating the Moku system with camera based visual devices, the efficiency of the laboratory has been significantly improved.The Moku platform utilizes the processing power of field programmable gate arrays (FPGAs) to provide a ...

    2024-05-23
    Voir la traduction