Français

Composite two-dimensional materials for fiber lasers demonstrate the prospects of ultra fast optical applications

341
2023-09-21 14:55:06
Voir la traduction

The formation of dissipative solitons is influenced by various factors, such as spectral filtering effect and Kerr nonlinearity effect. This interaction leads to the possibility of mode locking on a large range of parameters, generating pulses with completely different types and evolution from conventional physical laws and optical properties, tolerating higher nonlinear effects, and effectively avoiding the generation of pulse splitting. The laws of physics and optical properties have made significant improvements compared to traditional light pulses.

The researchers led by Professor Zhang Haikun from Jinan University designed the use of two materials with different optical properties, BP and SnSe 2, which were stacked together through van der Waals forces to form heterojunctions. This allowed the materials to maintain their respective optical properties while achieving electron migration and interband hopping through interlayer coupling, thereby achieving optical synergy and further optimizing the optoelectronic properties of the composite materials.

The work titled "Picosecond Dissipative Soliton Generation in Ytterbium Doped Fiber Lasers Based on BP/SnSe2-PVA Mixture Saturable Absorber" was published in Frontiers of Opto Electronics.

This composite material is made into a saturable absorber to prepare fiber lasers, demonstrating the enormous potential of composite materials composed of two two-dimensional materials in ultrafast optical applications.

Source: Laser Network

Recommandations associées
  • EOS and AMCM will open a new UK Additive Manufacturing Excellence Center

    The University of Wolverhampton (UK), along with global 3D printing leaders EOS and AMCM, will collaborate to establish a new Centre of Excellence (AM) for Additive Manufacturing in the UK. This partnership will provide cutting-edge technology from EOS and AMCM, and focus on developing advanced materials and processes for high demand applications in industries such as aerospace, automotive, aerosp...

    2024-04-15
    Voir la traduction
  • New Progress in Research on Three Lattice Photonic Crystal Surface Emission Lasers at Changchun Institute of Optics and Mechanics

    Recently, Tong Cunzhu, the research team of the Chinese President of Science, Chunguang Institute of Mechanical Mechanics, made important progress in the research field of photonic crystal surface emitting lasers (PCSEL), proposed a three lattice structure and achieved a low threshold 1550nm PCSEL. Relevant achievements were published in Light: Science and Application vol.13, 442024, and the famou...

    2024-03-15
    Voir la traduction
  • Coherent Company Launches Industry's First 1200 mW Pumped Laser Module for Optical Amplification in DWDM Networks

    Coherent Corporation, the leader in erbium-doped fiber amplifier pumped laser technology for deployment in optical networks, announced today the launch of the industry's first pumped laser module in a 10 pin butterfly package with an output power of 1200 mW.The rapid development of optical communication technology is reaching the theoretical limit of fiber capacity and driving the expansion of tr...

    2023-09-22
    Voir la traduction
  • Progress in Theoretical Research on the Mechanism of Liquid Terahertz Wave Generation by Precision Measurement Institute

    Terahertz waves have significant application value in communication and imaging. The nonlinear interaction between strong field ultrafast laser and matter is one of the important ways to generate terahertz waves. The experimental and theoretical research related to terahertz generation media such as plasma, gas, and crystal is relatively sufficient. However, liquid water is a strong absorbing medi...

    2024-03-22
    Voir la traduction
  • Laser technology reveals hidden gases in complex mixtures

    Laser Network reported on January 11th that modern equipment has been fine tuned to detect highly specific gases, including trace gases found in the atmosphere, gases present in combustion exhaust emissions, and gases used in technology plasma applications.They achieve this by calculating the percentage of light at a certain wavelength that is absorbed or attenuated by the sample. This way, the co...

    2024-01-11
    Voir la traduction