Français

Inertia Enterprises focuses on the commercialization of fusion energy

205
2025-08-29 10:50:34
Voir la traduction

Inertia Enterprises, a private fusion power start-up, based in San Francisco, CA., has announced the formation of the company, co-founded by fusion energy pioneer Dr. Andrea “Annie” Kritcher, fusion power plant designer Prof. Mike Dunne, and successful tech entrepreneur, Jeff Lawson.

Underpinned by this team of experts spanning science, engineering, technology and business, Inertia stated that it is “commercializing the only approach to fusion that has successfully achieved ignition and energy gain – demonstrated at the U.S. Department of Energy’s (DOE) Lawrence Livermore National Laboratory (LLNL)”.

Inertia’s strategy is to take the most direct, scientifically proven path from what is working today at LLNL toward commercial energy. The company is developing a new generation of mass-produced, low-cost lasers and fuel targets that leverage the scientific result of fusion ignition.

 



Inertia co-founders: Annie Kritcher, Jeff Lawson, and Mike Dunne


The company has partnered with LLNL on a substantial and multifaceted relationship, including research agreements, to advance low-cost, mass-production target design and fabrication. The company has licensed nearly 200 patents covering multiple technologies critical to achieve fusion ignition, and has reached a first-of-its-kind arrangement to advance public-private collaboration and technology transfer, allowing Dr. Kritcher to be a co-founder of Inertia.

“The goal of delivering limitless fusion energy has attracted tens of billions of dollars in government investment and decades of research, culminating in the achievement of ignition just a couple of years ago,” said Jeff Lawson, Inertia founder and CEO. “Standing on the shoulders of giants, we see a clear path from big science to commercial energy by scaling up the industrial base to the scale needed for laser inertial fusion.”

In December 2022, Dr. Kritcher made history with the team at LLNL by conducting the first controlled fusion experiment to achieve fusion ignition, also known as scientific energy breakeven, meaning it produced more energy from fusion than the laser energy used to drive it. This unprecedented achievement laid the foundation for Inertia to bring fusion to commercial scale.

The founders

Inertia Enterprises is founded by three established innovators in their respective fusion-related fields:

Kritcher has been the lead designer of these LLNL experiments since 2019, responsible for the physics design that successfully achieved ignition.
Lawson was the founder and CEO of tech platform Twilio, which he grew from inception to over $4B in revenue, a public listing on the New York Stock Exchange, and a global footprint of over 300,000 customers.
Dunne is a professor of Photon Science at Stanford University and an Associate Lab Director of the SLAC National Accelerator Laboratory, where he leads a preeminent, multi-billion-dollar research facility using high power lasers that hit targets at kHz rates. Previously, Dunne led the five-year program at LLNL to deliver an industry-validated power plant design based on the LLNL ignition approach, assembling a team of over seventy vendors, utility companies, national labs and universities.
Inertia’s statement added that the startup “is positioned to transform the field by combining the proven science from LLNL with innovative technology, leveraging Dr. Kritcher’s specialized expertise in fuel-target design, Professor Dunne’s leadership in integrated fusion power plant development and multi-billion-dollar laser facility advancement, and Lawson’s two decades of start-up and business acumen—ensuring the partnerships and expertise needed to move this breakthrough toward commercialization.”

Kritcher commented, “There’s a lot of excitement around various potential pathways to fusion right now, but only one approach has delivered energy gain. This result is a monumental step for limitless clean energy.” Fusion energy offers a technological breakthrough unseen in American history since modern inventions like the internet, telephone, or light bulb. Fusion energy is the process where two light atoms combine, or “fuse” to form a larger atom, releasing a massive amount of energy.

“We’re at a crucial tipping point. 2022 proved that controlled fusion ignition is possible, but current lasers, like the one at LLNL, which is the size of three football fields, are not suitable for commercialization,” said Prof. Dunne. “But with modern laser technologies, we can combine the transformative results from Annie and the team with high-powered laser technology from the semiconductor industry to convert decades of research into a reality.”

Source: optics.org

Recommandations associées
  • Chinese researchers enhance perovskite lasers by suppressing energy loss

    Limiting Auger recombination enables “record” quasi-continuous wave laser output.For years, engineers have sought better ways to build tiny, efficient lasers that can be integrated directly onto silicon chips, a key step toward faster, more capable optical communications and computing.Today’s commercial lasers are mostly made from III-V semiconductors grown on specialized substrates—a process that...

    08-25
    Voir la traduction
  • Laser giant nLIGHT's preliminary performance forecast for the fourth quarter of 2024

    Recently, nLIGHT, a manufacturer of high-power semiconductors and fiber lasers, released its preliminary performance forecast for the fourth quarter of 2024.According to disclosed information, nLIGHT expects its revenue for the fourth quarter of 2024 to be between $46 million and $48 million, lower than the estimated range of $49 million to $54 million when it released its third quarter results on...

    01-16
    Voir la traduction
  • Thales will provide laser payloads for Hellas Sat 5

    Hellas Sat, which holds a majority stake in Arabsat, has reached a memorandum of understanding with Thales Alenia Space to collaborate on the development of a luminous communication payload for an upcoming new mission that will be launched on the future Hellas Sat 5 telecommunications satellite, which will operate at 39 degrees east longitude.The partnership between Hellas Sat and Thales Alenia Sp...

    2024-01-30
    Voir la traduction
  • The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan

    The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan. The first advanced attosecond laser facility in China will have 8 beam lines landing in Dongguan.Laser enjoys the reputation of being the "fastest knife," "most accurate ruler," and "brightest light," among others. As an important research direction in the laser field, ultrafast laser has always been...

    2023-10-28
    Voir la traduction
  • The breakthrough of coherent two-photon lidar overcomes distance limitations

    Schematic diagram of experimental setupNew research has revealed advances in light detection and ranging technology, providing unparalleled sensitivity and accuracy in measuring the distance of distant objects.This study was published in the Physical Review Letters and was the result of a collaboration between Professor Yoon Ho Kim's team at POSTECH in South Korea and the Center for Quantum Scienc...

    2023-12-08
    Voir la traduction