Français

Polish and Taiwan, China scientists are committed to new 3D printing dental implants

776
2024-04-17 16:18:53
Voir la traduction

Researchers from Wroclaw University of Technology and Taipei University of Technology in China are developing dental implants made from 3D printed ceramic structures connected to metal cores. Due to the use of biodegradable magnesium, bone tissue will gradually grow into such implants.
 
"The result will be a composite implant that can replace human teeth. Its scaffold is made of aluminum oxide and manufactured using additive methods [3D printing], ensuring that it will be customized according to specific patient needs," the press release stated.

In the upper part (crown), the ceramic structure is solid, and in the lower part (root), the ceramic structure is porous. Therefore, it can be filled with liquid metal - magnesium alloy. This will reduce the fragility of the structure, and the core itself will initially act as an anchor, fixing the implant in the jawbone. Magnesium will gradually degrade, releasing space for bone tissue growth (this process is called bone integration). As a result, the implant will become very stable - embedded in human tissue.

Scientists from Taiwan, China, China, in cooperation with researchers from Wroclaw, have developed appropriate ceramic preforms with openings, that is, they combine with metal cores to form implant structures. These structures were sent to the Department of Light Component Engineering, Casting, and Automation at the School of Mechanical Engineering, Wroclaw University of Technology, where researchers injected metal (a biocompatible magnesium alloy) into them.

The project is still in its early stages
"We are in the early stages of the project, so we are currently testing two casting techniques, and then we will choose the most favorable one. The first is the pressure infiltration method, or more accurately, from liquid pressing, placing the ceramic shape in a pressing chamber and pouring liquid metal, then lowering the piston to press the liquid metal into the pores of the ceramic. Preformed parts," Dr. Anna Dmitruk explained in a press release.

"The second technology is precision casting, which is also used in jewelry production. Here, we first make gypsum molds for wax or plastic models that were previously prepared," she added.

The work of the CERMET program will last for three years. The result will be an implant prototype. After development is completed, scientists can seek funding for subsequent stages of work, including medical pre research.

The project leader is Professor Krzysztof Naplocha from the School of Mechanical Engineering at Wroclaw University of Technology, with team members including Dr. Anna Dmitruk, Dr. Adrianna Filipiak Kaczmarek, and Dr. Natalia Ra ź Ny.

Source: Laser Net

Recommandations associées
  • Implementation of 20W high-power fiber optic frequency comb by the Institute of Physics, Chinese Academy of Sciences

    High power optical frequency combs play a crucial role in nonlinear precision spectroscopy, extreme ultraviolet optical frequency comb generation, nuclear atomic clock research, and other fields. Fiber optic femtosecond lasers are the preferred solution for achieving high power optical frequency combs due to their simple structure, stable performance, and easy amplification.However, due to the una...

    2023-10-11
    Voir la traduction
  • Laser gyroscopes measure small changes in daytime length on Earth

    Recently, scientists used laser gyroscopes to measure that the change in Earth's rotational speed is less than one millionth. This technology can help scientists understand the complex flow of water and air, which can cause the smallest adjustments to the Earth's rotation.The Earth's rotation is not completely stable. Planets accelerate or slow down as they rotate, slightly shortening or prolongin...

    2023-09-19
    Voir la traduction
  • Overview of Ultra Short Pulse Laser Processing of Wide Bandgap Semiconductor Materials

    Professor Zhang Peilei's team from Shanghai University of Engineering and Technology, in collaboration with the research team from Warwick University and Autuch (Shanghai) Laser Technology Co., Ltd., published a review paper titled "A review of ultra shot pulse laser micromachining of wide bandgap semiconductor materials: SiC and GaN" in the international journal Materials Science in Semiconductor...

    2024-07-30
    Voir la traduction
  • Panacol showcases a new optical grade adhesive on Photonics West

    Panacol will showcase new optical grade resins and adhesives for embossing and optical bonding applications at the SPIE Photonics West exhibition held in San Francisco, California, USA from January 30 to February 1, 2024.These new adhesives can be used for sensors in lightweight carpets, smart devices, and wearable devices in the automotive industry, or for generating structured light in projector...

    2023-12-12
    Voir la traduction
  • Shanghai Optics and Machinery Institute has made new progress in the research of high repetition frequency and high energy medium wave infrared lasers

    Recently, the research team of Aerospace Laser Technology and System Department of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, based on 2.1 μ M Ho: YAG main oscillator amplifier pumped ZGP crystal, achieving high energy 3-5 at kHz repetition frequency μ The output of M medium wave infrared laser and further research on beam quality improvement technology for high-...

    2024-05-22
    Voir la traduction