Français

The University of Illinois combines the light emitted by multiple VCSEL into a single coherent mode

6
2025-08-04 13:54:23
Voir la traduction

Today, VCSELs (vertical cavity surface-emitting lasers) are used in everything from computer mice to face-scanning hardware in smart phones. They are renowned for their ability to integrate seamlessly into semiconductor chips, VCSELs are still considered to be an active field of research, and many researchers believe there are still important applications waiting to be discovered.
The laboratory of Kent Choquette, a professor of electrical and computer engineering in Grainger College of Engineering at the University of Illinois Urbana-Champaign, has developed a new design in which light from multiple VCSELs is combined to form a single coherent pattern called a “supermode”.

As the researchers report in IEEE Photonics Journal, the result is a controllable pattern brighter than what is possible with an array of independent devices.

 



940 nm dual-cavity photonic crystal VCSEL array


‘Challenging VCSELs’

“VCSELs are more challenging to work with than other kinds of lasers because they naturally tend to emit light in many special patterns, or modes, so the central problem has been figuring out how to get the light to stay in the mode you want,” Choquette said.

“The design we explore in this study is noteworthy because it shows how to extend mode control across more than one VCSEL and use an array of them in tandem to get a single desired mode. With this level of cooperation across arrays of VCSELs, we’re confident that new uses for these devices will emerge.”

Ordinarily, VCSELs are individually controlled with electrical signals, making the problem of coordinating a coherent beam across laser cavities difficult. The researchers proposed a design that makes use of a photonic crystal connecting adjacent VCSELs. So, although they are electrically independent, they act in tandem optically. This makes it possible to control both cavities in a way that produces one of two pre-determined collective patterns, or supermodes.

The details of the design, including the use of a special “anti-guided” crystal to achieve the optical coupling, were studied by Dan Pflug, an Illinois Grainger Engineering graduate student in Choquette’s laboratory and the study’s lead author.

The Illinois team then turned the design over to the company Dallas Quantum Devices, where a working device was fabricated in a foundry-level process, demonstrating that the design can be practically realized.

“Our collaboration with Dallas Quantum Devices originates in a call from the National Science Foundation for Small Business Innovation Research proposals in high-speed VCSELs,” Choquette said. “I have known some of these people for over 20 years. It’s a case where what started out as informal exchanges has led to a long-term relationship.”

For Choquette, this work is a product of discovery and innovation for its own sake. He observed that this is often where some of the most important end uses for new technologies originate. “When I started working with VCSELs 30 years ago, the interest in them was purely academic,” he said. “But one day, I got a call from Microsoft, and laser computer mice entered the market. Now, everyone uses VCSELs every day. This is the reason we do research like this: applications aren’t always obvious, and the only way to know is to try it out.”

Source: optics.org

Recommandations associées
  • Scientists use glass to create femtosecond lasers

    Image source: Federal Institute of Technology in Lausanne, SwitzerlandScience and Technology Daily, Beijing, September 27th (Reporter Zhang Jiaxin) Commercial femtosecond lasers are manufactured by placing optical components and their mounting bases on a substrate, which requires strict alignment of optical components. So, is it possible to manufacture femtosecond lasers entirely from glas...

    2023-09-28
    Voir la traduction
  • Lumibird signs a 20 million euro contract to provide laser rangefinders for airborne defense applications

    Recently, European laser technology leader Lumibird announced the signing of a major contract to provide laser rangefinders for airborne defense applications.The contract is worth approximately 20 million euros, adding to Lumibird's existing business in laser rangefinders. It covers the supply of over 100 laser rangefinders over a three-year period starting from the third quarter of 2024, as well ...

    2023-10-01
    Voir la traduction
  • Blue laser enterprise NUBURU obtains $5.5 million bridge financing

    Recently, NUBURU, a supplier of high-power and high brightness industrial blue laser technology in the United States, announced that it has reached bridge loan agreements ("bridge loans" or "bridge financing") with existing and new institutional investors.The principal of this bridge financing is $5.5 million, aimed at providing funding for the company until it obtains long-term credit financing,...

    2023-11-23
    Voir la traduction
  • A research team at City University of Hong Kong has developed a multispectral, ultra-low dose photoacoustic microscope system

    Optical resolution "photoacoustic microscope is a new biomedical imaging technology, which can be used in the research of cancer, diabetes, stroke and other diseases. However, insufficient sensitivity has always been a long-term obstacle to its wider application.According to Maims Consulting, a research team from City University of Hong Kong (CityU) has recently developed a multispectral, ultra-lo...

    2023-09-21
    Voir la traduction
  • High performance optoelectronic device developer "Micro Source Photon" completes B+round financing

    Recently, Weiyuan Photon (Shenzhen) Technology Co., Ltd. (hereinafter referred to as "Weiyuan Photon") announced the completion of a B+round of financing, with investors including Yicun Capital, Chenfeng Capital, and Beijing Guoqian Investment. The specific amount has not been disclosed. According to its official website, MicroSource Photonics was founded in November 2018, with the main members...

    2024-07-23
    Voir la traduction