Français

Three core processes of laser soldering support the development of PCB electronics industry

205
2024-04-15 16:43:52
Voir la traduction

In the field of modern electronic manufacturing, PCB (printed circuit board) serves as the carrier of electronic components. In its manufacturing process, laser soldering technology has become a key link in PCB electronic manufacturing due to its advantages of high precision, high efficiency, and low thermal impact. This article will explore the application of laser soldering technology and its main soldering materials - tin wire, solder paste, and solder balls - in PCB electronic manufacturing.

01
Laser Tin Wire Welding for PCB Circuit Board Welding
Tin wire plays an important role in laser soldering process. After focusing the laser beam, it can quickly melt the tin wire, achieving reliable connection between components and PCB boards. This welding method not only reduces the thermal stress generated during the welding process, but also effectively improves the welding quality and reduces the welding defect rate.
Laser tin wire welding has the advantages of high precision and high efficiency, and is suitable for situations with high requirements for welding quality. By adjusting the laser power and focal length, precise welding of PCB boards with different materials and thicknesses can be achieved.

02
Laser solder paste welding for PCB circuit board welding
Solder paste is mainly used for soldering surface mount components. After coating an appropriate amount of solder paste on the PCB board, the components are heated by a laser soldering machine to melt the solder paste and penetrate into the gap between the components and the PCB board, forming a solid solder joint.
Solder paste welding has the characteristics of simple operation and fast welding speed, making it suitable for efficient welding on large-scale production lines. In addition, solder paste welding can also reduce production costs and improve welding quality.

03
Laser solder ball welding for PCB circuit board welding
Tin balls, as a new type of soldering material, have received widespread attention in the field of laser soldering in recent years. The laser beam quickly melts the solder balls and accurately drips them onto the solder joints, achieving the welding between the components and the PCB board.
Tin ball welding has the advantages of high welding accuracy and low heat impact, making it particularly suitable for high-end electronic products that require high welding quality, such as BGA chips, wafers, hard disk heads, camera modules, and optoelectronic products.

04
The Future Development of Laser Soldering Technology
In the field of PCB electronic manufacturing, the emergence of laser soldering technology, combined with perfect soldering materials such as tin wire, solder paste, and solder balls, has brought revolutionary changes to the entire electronics industry and injected a continuous stream of vitality. In the future, with the continuous development of technology, we believe that laser soldering technology will play a more important role in the electronics industry, bringing more convenience and surprises to our lives.

05
The advantages of laser soldering technology
The perfect combination of laser soldering technology and various soldering materials further improves the welding quality. Not only has it subverted traditional soldering methods, but it has also significantly reduced production costs and defect rates while improving welding efficiency and quality, laying a solid foundation for the sustainable development of the electronic manufacturing industry.

Soldering materials such as tin wire, solder paste, and solder balls, under the action of laser, can not only quickly melt and achieve perfect fusion with the parts to be welded, ensuring the strength and stability of the welded joint, but also avoiding adverse phenomena such as virtual soldering and cold soldering that may occur in traditional soldering. The high-speed characteristics of laser welding significantly improve production efficiency, providing strong support for the large-scale production of electronic products.

In addition, laser soldering technology also has high flexibility. By adjusting the laser power and focal length, precise welding of PCB boards with different materials and thicknesses can be achieved. This flexibility makes laser soldering technology more widely used in the field of PCB electronics, meeting the needs of different customers.

Source: Zichen Laser

Recommandations associées
  • Ultra wideband pulse compression grating for single cycle Ava laser implemented by Shanghai Institute of Optics and Mechanics

    Recently, Shao Jianda, a researcher of Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Jin Yunxia, a researcher team, and Li Chaoyang, a researcher of Zhangjiang Laboratory, have made breakthroughs in the field of ultra wideband pulse compression gratings.The research team has successfully developed a ultra 400 nm broadband gold grating for single cycle pulse com...

    2023-10-01
    Voir la traduction
  • New laser technology unlocks deuterium release in aluminum layers

    In a recent study, quadrupole mass spectrometry was used to measure the number of deuterium atoms in the aluminum layer.A recent study led by the National Institute of Laser, Plasma, and Radiation Physics and Sasa Alexandra Yehia Alexe from the University of Bucharest explored the details of laser induced ablation and laser induced desorption techniques using a 1053 nm laser source. The study was ...

    2023-11-25
    Voir la traduction
  • Diamond Light Source and NPL reach a new five-year agreement

    Recently, two leading UK scientific institutions, Diamond Light Source and National Physical Laboratory (NPL), have reached a new five-year agreement to promote joint collaborative efforts.The agreement was approved by signing a Memorandum of Understanding (MoU), which will bring these two institutions together.Diamond Light Source is a national synchrotron facility in the UK known for generating ...

    2024-04-25
    Voir la traduction
  • Demonstrating broadband thermal imaging using superoptical technology in a new framework

    The research team used a new reverse design framework to demonstrate ultra optical broadband thermal imaging for applications ranging from consumer electronics to thermal sensing and night vision.The new framework, known as the "Modulation Transfer Function" project, solves the challenges related to broadband metaoptics by determining the functional relationship between image contrast and spatial ...

    2024-03-19
    Voir la traduction
  • New LiDAR can 'see' faces from hundreds of meters away

    At a distance of 325 meters, the human eye may only be able to distinguish between a person's head and body, making it difficult to discern any other differences. But a research team including Heriot Watt University in the UK and Massachusetts Institute of Technology in the US has developed a new type of LiDAR scanner that can perform detailed analysis of a person's face from such a distance and c...

    02-11
    Voir la traduction