Español

Siemens will provide Rolls Royce with aerospace additive manufacturing components

710
2024-12-13 11:42:09
Ver traducción

Recently, Siemens Energy's Materials Solutions division (hereinafter referred to as Siemens) officially signed a cooperation agreement with Rolls Royce, a well-known enterprise in the field of aviation engines in the UK, agreeing that Siemens will develop and supply mass-produced additive manufacturing components for Rolls Royce's civil aerospace business.

Rolls Royce and 3D Printing Technology
Rolls Royce has a long history of using additive manufacturing technology.
In 2013, the company had planned to use 3D printing technology to manufacture parts for its jet engines, in order to accelerate production speed and manufacture more lightweight components.

In 2015, the company collaborated with the UK Additive Manufacturing Center to produce the largest civil aviation engine component at the time using 3D printing technology; In the same year, the company used 3D printing technology to manufacture aviation parts, which were already used in the latest Trent XWB-97 engine at the time and made their first test flight on the Airbus A380.

In 2019, the company announced SLM Solutions' SLM ® The 5004 laser equipment is designated for additive manufacturing development by the company.

The history of cooperation between Rolls Royce and Siemens
The new agreement between Siemens and Rolls Royce aims to expand the mass production scale of additive manufacturing, enabling the development of cutting-edge, lightweight, and high-performance components for commercial flight. This collaboration is an important milestone for Siemens' additive manufacturing business, as it further expands the application of the company's additive manufacturing technology in the aerospace industry.

It is worth mentioning that this cooperation is not the first major transaction between Siemens and Rolls Royce. As early as 2014, both parties had already engaged in significant transactions.

In 2014, Siemens Energy acquired Rolls Royce's natural gas turbine and compressor business for £ 785 million. Afterwards, both parties also signed a long-term contract allowing Siemens to continue using Rolls Royce technology to develop more efficient gas turbines. This 25 year technology licensing agreement will give Rolls Royce an additional £ 200 million.

Subsequently, in the transaction between the two parties in June 2019, the acquiring entity was changed to Rolls Royce. In June 2019, Rolls Royce announced an agreement with Siemens to acquire its electric and hybrid electric aviation propulsion business, eAircraft, to accelerate its electrification strategy.

The demand for 3D printing in the aerospace industry is growing rapidly
3D printing technology in the aerospace industry is renowned for its efficiency and ability to produce innovative prototypes, and has been one of the largest demand markets for 3D printing technology due to its alignment with the Green Aviation initiative aimed at reducing the aviation environmental footprint.

According to the research report on the aerospace additive manufacturing market by Research and Markets, the global market size for 3D printing in the aerospace industry is expected to reach approximately $3.26 billion in 2024, with a compound annual growth rate (CAGR) of 18.8% from 2025 to 2033, and a market size of $15.35 billion by 2033.

Write at the end
The cooperation between Siemens and Rolls Royce once again confirms the development prospects of 3D printing technology in the aerospace industry. Whether it is the high-performance requirements for structural components in the lightweight development trend of civil aviation aircraft, or the high-temperature alloy processing difficulties faced in the field of aviation engines, they can all be solved through 3D printing technology. I believe that with the diversification of 3D printing materials and the development of additive manufacturing equipment, additive manufacturing technology will achieve breakthrough applications in a wider range of aviation fields.

Source: Yangtze River Delta Laser Alliance

Recomendaciones relacionadas
  • LIS Technologies closes $11.88 million seed round of financing

    On August 19th, local time, LIS Technologies, a U.S.-based developer of laser uranium enrichment technology, announced the latest closing of an $11.88 million seed round of financing. According to reports, LIS Technologies is a company focused on developing advanced laser technology and is the only U.S.-based laser uranium enrichment company to hold a homegrown patent. The round attracted a numb...

    2024-08-22
    Ver traducción
  • Abnormal relativistic emission generated by strong interaction between laser and plasma reflector

    The interaction between strong laser pulses and plasma mirrors has been a focus of recent physical research, as they generate interesting effects. Experiments have shown that these interactions can generate a nonlinear physical process called high-order harmonics, characterized by emitting extreme ultraviolet radiation and brief flashes of laser light.Researchers from the Czech Extreme Light Infra...

    2023-12-04
    Ver traducción
  • Topological high-order harmonic spectroscopy in Communications Physics

    It is reported that researchers from the University of Salamanca in Spain have demonstrated a high-order harmonic spectroscopy scheme generated by the interaction between a structured driving beam and a crystal solid target. This work promotes the topological analysis of high-order harmonic fields as a spectroscopic tool to reveal nonlinearity in the coupling of light and target symmetry. The rele...

    2024-01-15
    Ver traducción
  • Laser based deformation may lead to self optimized aircraft wings

    Due to advances in materials science by Stockholm researchers, changing the shape during flight to better handle airflow passing through its aircraft wings may be imminent. The trick involves the melting and drilling capabilities of lasers.Researchers from KTH Royal Institute of Technology in Stockholm, Sweden conducted experiments on paraffin. Using the 2D version of the material, they were able ...

    2024-01-18
    Ver traducción
  • LASER CHINA 2025 on-the-Spot, What New Technologies are Trending This Year?

    Every year, Shanghai is lit up with a “feast of light”, that is LASER World of PHOTONICS CHINA, which has lasted for 20 years and become an arena for global photoelectric enterprises to display and compete, instead of just an exhibition hall of devices. Chanelink team visited all these halls for laser technology, thoroughly learning the cutting-edge trends in photoelectric industry.As a technical...

    03-19
    Ver traducción