Español

Siemens will provide Rolls Royce with aerospace additive manufacturing components

529
2024-12-13 11:42:09
Ver traducción

Recently, Siemens Energy's Materials Solutions division (hereinafter referred to as Siemens) officially signed a cooperation agreement with Rolls Royce, a well-known enterprise in the field of aviation engines in the UK, agreeing that Siemens will develop and supply mass-produced additive manufacturing components for Rolls Royce's civil aerospace business.

Rolls Royce and 3D Printing Technology
Rolls Royce has a long history of using additive manufacturing technology.
In 2013, the company had planned to use 3D printing technology to manufacture parts for its jet engines, in order to accelerate production speed and manufacture more lightweight components.

In 2015, the company collaborated with the UK Additive Manufacturing Center to produce the largest civil aviation engine component at the time using 3D printing technology; In the same year, the company used 3D printing technology to manufacture aviation parts, which were already used in the latest Trent XWB-97 engine at the time and made their first test flight on the Airbus A380.

In 2019, the company announced SLM Solutions' SLM ® The 5004 laser equipment is designated for additive manufacturing development by the company.

The history of cooperation between Rolls Royce and Siemens
The new agreement between Siemens and Rolls Royce aims to expand the mass production scale of additive manufacturing, enabling the development of cutting-edge, lightweight, and high-performance components for commercial flight. This collaboration is an important milestone for Siemens' additive manufacturing business, as it further expands the application of the company's additive manufacturing technology in the aerospace industry.

It is worth mentioning that this cooperation is not the first major transaction between Siemens and Rolls Royce. As early as 2014, both parties had already engaged in significant transactions.

In 2014, Siemens Energy acquired Rolls Royce's natural gas turbine and compressor business for £ 785 million. Afterwards, both parties also signed a long-term contract allowing Siemens to continue using Rolls Royce technology to develop more efficient gas turbines. This 25 year technology licensing agreement will give Rolls Royce an additional £ 200 million.

Subsequently, in the transaction between the two parties in June 2019, the acquiring entity was changed to Rolls Royce. In June 2019, Rolls Royce announced an agreement with Siemens to acquire its electric and hybrid electric aviation propulsion business, eAircraft, to accelerate its electrification strategy.

The demand for 3D printing in the aerospace industry is growing rapidly
3D printing technology in the aerospace industry is renowned for its efficiency and ability to produce innovative prototypes, and has been one of the largest demand markets for 3D printing technology due to its alignment with the Green Aviation initiative aimed at reducing the aviation environmental footprint.

According to the research report on the aerospace additive manufacturing market by Research and Markets, the global market size for 3D printing in the aerospace industry is expected to reach approximately $3.26 billion in 2024, with a compound annual growth rate (CAGR) of 18.8% from 2025 to 2033, and a market size of $15.35 billion by 2033.

Write at the end
The cooperation between Siemens and Rolls Royce once again confirms the development prospects of 3D printing technology in the aerospace industry. Whether it is the high-performance requirements for structural components in the lightweight development trend of civil aviation aircraft, or the high-temperature alloy processing difficulties faced in the field of aviation engines, they can all be solved through 3D printing technology. I believe that with the diversification of 3D printing materials and the development of additive manufacturing equipment, additive manufacturing technology will achieve breakthrough applications in a wider range of aviation fields.

Source: Yangtze River Delta Laser Alliance

Recomendaciones relacionadas
  • Lameditech of South Korea was listed on the KOSDAQ exchange on the 17th

    On June 11, 2024, Korean laser medical equipment manufacturer Lameditech successfully completed its initial public offering and was listed on the KOSDAQ exchange on the 17th.Last month, its public offering price was fixed at 16000 Korean won. In this public offering, Lameditech issued a total of 1298000 shares, raising approximately 20.8 billion Korean won. Since Lameditech's debut on KOSDAQ, as o...

    2024-06-26
    Ver traducción
  • New machine learning algorithm accurately decodes molecular optical 'fingerprints'

    Recently, a research team from Rice University in the United States developed a new machine learning algorithm - Peak Sensitive Elastic Network Logistic Regression (PSE-LR). This algorithm is adept at interpreting the unique optical characteristics of molecules, materials, and disease biomarkers, which can help achieve faster and more accurate medical diagnosis and sample analysis. The relevant pa...

    05-09
    Ver traducción
  • Diffractive optical elements: the behind the scenes hero of structured light laser technology

    In today's rapidly developing technological era, structured light laser technology has become an important tool in the fields of 3D measurement and image capture. The core of this technology lies in a magical device called Diffractive Optical Elements (DOE), which can precisely control and shape laser beams, creating various complex light patterns. But what exactly is DOE? How does it work? Let Ho...

    2024-04-10
    Ver traducción
  • Changing Optical Design: How Multi scale Simulation Improves the Efficiency of Modern Devices

    Optical equipment is an integral part of technologies such as data centers and autonomous vehicle, which are constantly developing to meet the needs of complex applications. The challenge faced by designers is to manipulate light at the wavelength scale to achieve the required optical properties, which requires precision at both the nano and macro scales. Nanoscale structures, such as those on LED...

    2024-03-02
    Ver traducción
  • BWT's 3000W product speed surges by 200%

    In the era of speed and precision, the field of thin and medium plate processing is experiencing a revolutionary transformation. Today, let's explore a remarkably fast tool -- BWT’s Lightning 3000W@34μm fiber laser, and witness its impressive performance.On busy production lines, this product is completing complex cutting tasks at astonishing speeds. Its high-speed, high-efficiency, and high-quali...

    05-12
    Ver traducción