Español

The latest progress in laser chip manufacturing

194
2024-07-29 15:05:12
Ver traducción

Modern computer chips can construct nanoscale structures. So far, only these tiny structures can be formed on top of silicon chips, but now a new technology can create nanoscale structures in a layer beneath the surface. The inventor of this method stated that it has broad application prospects in the fields of photonics and electronics, and one day, people can manufacture 3D structures on the entire silicon wafer.

This technology relies on the fact that silicon is transparent to certain wavelengths of light. This means that a suitable laser can pass through the surface of the wafer and interact with the underlying silicon. However, designing a laser that can penetrate the surface without causing damage and can also perform precise nanoscale manufacturing underneath is not simple.

Researchers at Birkent University in Ankara, Türkiye, achieved this goal by using spatial light modulation to create needle shaped laser beams, so as to better control the distribution position of beam energy. By utilizing the physical interaction between laser and silicon, they are able to manufacture lines and planes with different optical properties, which can be combined to create nanophotonic elements beneath the surface.
The use of lasers for manufacturing inside silicon wafers is not a new phenomenon. But Onur Tokel, assistant professor of physics at the University of Kent who led the research, explained that so far, only micrometer scale structures have been produced. He said that extending this method to the nanoscale can unleash new capabilities, as it can create features that are comparable in size to the wavelength of the incident light. When this happens, these structures exhibit a range of novel optical behaviors, which makes it possible to manufacture metamaterials and metasurfaces, among other things.

Silicon is the cornerstone of electronics, photonics, and photovoltaic technology, "Tokel said. If we can introduce additional functionalities inside the nanoscale wafer to supplement these existing functionalities, it will bring a completely different paradigm. Now you can imagine doing things in volume, and even potentially in three-dimensional space. We believe this will open up exciting new directions.

Previous technologies were unable to manufacture at the nanoscale because once the laser enters the silicon, it scatters and it is difficult to deposit energy accurately. In a paper published in the journal Nature Communications, Tokel's team demonstrated that they can solve this problem by using a special laser called Bessel beam, which does not undergo diffraction. This means that lasers can counteract light scattering effects and maintain narrow focusing inside silicon, allowing for precise energy deposition.

When the laser is irradiated onto the wafer, tiny holes or gaps are generated in the area where the beam is focused. Tokel said that this situation has also occurred with previous methods, but the smaller gaps generated by the more tightly focused beam exhibit a "field enhancement" effect, resulting in an increase in laser intensity around them. This will change the silicon structure around the gap, further enhancing the enhancement effect and forming a self-sustaining feedback loop. The team also found that they can change the direction of field enhancement by altering the polarization of the laser.

The final result is to create a two-dimensional planar or linear structure with a minimum of 100 nanometers in the silicon wafer. The refractive index of these structures is different from the rest of the wafer, but Tokel stated that the composition of these structures is not yet fully understood. Based on previous research, he believes that the underlying crystal structure of silicon wafers may have been modified. He added that electron microscopy research should be able to clarify this in the future, but ultimately there is no need to understand the exact underlying properties of these structures to create useful nanophotonic components.

To demonstrate this, researchers have developed a nanoscale photonic device called a Bragg grating, which can be used as an optical filter. According to the team, this is the first functional nanoscale optical component completely buried in silicon.

Maxime Chambonneau, a researcher at the University of Jena in Germany, said that it is remarkable that researchers were able to achieve nanoscale features, as the relatively long laser pulses used by the Tokel team typically create large heat affected zones, leading to microscale variations. The Bilkent team uses pulses in nanoseconds, while other direct laser writing works traditionally involve picosecond or femtosecond lasers. Chambonneau suggests that creating features smaller than light waves could bring various possibilities, including improving the energy harvesting capability of solar cells.

Due to the fact that this manufacturing technology does not cause any changes to the wafer surface, Tokel stated that in the future, this technology can be used to manufacture multifunctional devices, with electronic components located on the surface and photonic components buried underneath. The team is still investigating whether this method can be used to carve microfluidic channels beneath the surface of chips. Tokel stated that pumping fluid through these channels can improve heat dissipation, thereby helping to cool electronic devices and make them run faster.

Tokel stated that the biggest limitation of this method is that researchers cannot precisely control the location of voids in specific areas. Currently, a small portion of voids are unevenly distributed in the area where the laser beam is focused. Tokel stated that if they could more accurately locate these voids, they could perform nanomachining in three-dimensional space, rather than simply producing lines or planes.
If you can individually control these things and distribute them like chains, then this will be very exciting in the future, "he added. Because in this way, you will have more control, which will make richer elements or systems possible.

Source: Semiconductor Industry Observation

Recomendaciones relacionadas
  • The UK team collaborated to evaluate epitaxial materials for surface-coupled lasers

    Sivers Photonics, a leading UK-based supplier of optical fiber communications and III-V semiconductor Photonics devices, has announced that it has received an initial order from UK-based laser developer Vector Photonics to evaluate epitaxial materials for a new next-generation surface-coupled laser project.The order, which includes laser manufacturing and life testing, will be the first time the t...

    2023-09-11
    Ver traducción
  • CO2 laser cutting machine for battery shell shaped parts: an innovative tool in energy technology manufacturing

    The development of new energy technology has made battery technology the engine for advancing clean energy. In battery manufacturing, the cutting of battery shell shaped parts is a crucial step. CO2 laser cutting machines have become an innovative tool for promoting the development of this field due to their high efficiency and precision. This article will delve into the important characteristics ...

    2023-12-25
    Ver traducción
  • LPKF 2024 H1 revenue up 15% year-on-year

    Recently, LPKF Laser, a leading supplier of innovative laser solutions in Germany, released its performance report for the first half of the 2024 fiscal year as of June 30, demonstrating the company's steady performance and forward-looking layout in a complex market environment. According to the financial report, LPKF Laser&Electronics SE achieved significant growth in comprehensive revenue ...

    2024-07-31
    Ver traducción
  • New super-resolution microscopy imaging technology: rapid imaging of neurons

    The research group led by Wang Kai from the Center for Excellence in Brain Science and Intelligent Technology of the Chinese Academy of Sciences has published a research paper titled "Super solution imaging of fast morphological dynamics of neurons in eating animals" online in Nature Methods. The team has developed a new type of super-resolution microscopy imaging technology, which solves the two ...

    2024-12-04
    Ver traducción
  • The United States has successfully developed a full 3D printed electric spray engine

    The fully 3D printed electric spray engine is suitable for small satellite in orbit maneuver, and its production cost is only a small part of that of traditional thrusters.Image source: Massachusetts Institute of Technology, USAThe Massachusetts Institute of Technology team recently demonstrated an electric spray engine made entirely of 3D printing technology, which can be propelled by emitting ...

    02-20
    Ver traducción