Español

Relevant teams of the Chinese Academy of Sciences breakthrough the application difficulties of ultra compact gas laser system in special scenarios

192
2024-07-20 10:43:45
Ver traducción

Recently, Liang Xu's team from the Laser Center of Anguang Institute, Chinese Academy of Sciences, Hefei Institute of Materia Medica, conducted research on corona discharge fluid control and its application in the gas laser system, proposed an electric field flow field coupling analysis model suitable for multi pin corona discharge scenarios, and revealed the flow velocity distribution characteristics and control laws of the multi pin current body pump. The designed current body pump can be used for non mechanical medium circulation drive of ultra compact and miniaturized gas laser systems, breaking through the application difficulties of ultra compact gas laser systems in special scenarios. The relevant research results were published in the top international journal Physics of Fluids in the field of fluid mechanics and were selected as Editor's Pick by the journal.

Traditional gas lasers use mechanical circulation devices to form high-speed medium circulation, which have the characteristics of large volume, strong vibration, and severe noise. They are not suitable for some special application scenarios and ultra compact gas laser system applications; Electrohydrodynamics (EHD) pumps generate "ion wind" through corona discharge, which has advantages such as lightweight, vibration free, and noise free. They can replace traditional mechanical circulation devices in miniaturized gas laser systems and expand gas laser applications.

Researchers conducted research on the flow distribution characteristics and flow rate control of multi needle corona discharge EHD pumps. 
Firstly, by establishing corresponding physical models and constructing a multi physics field coupling mechanism, a simplified nonlinear steady-state current body equation applicable to multi needle corona discharge systems is derived; Secondly, a high-precision and fast numerical calculation algorithm is designed for the nonlinear differential equation boundary value problem of flow velocity profile, to quantitatively calculate the controlled characteristics of steady-state flow velocity as a function of voltage and electrode spacing parameters.

The research results indicate that in the steady-state flow rate control of multi needle EHD pumps, voltage parameters are more dominant than electrode spacing, and the maximum and average flow rates of the system exhibit a superlinear evolution law with voltage control. In the design scheme of a multi needle EHD pump with an electrode spacing of 1 centimeter, providing a working voltage of 5000 volts can achieve a maximum gas flow rate of 0.82 meters per second, which can meet the requirements of medium circulation in small gas laser systems, meet the normal glow discharge of the main electrode, and expand the application of ultra compact gas laser systems in special scenarios.

Master's student Han Jinliang is the first author of the paper, and researcher Liang Xu is the corresponding author of the paper. This research was supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences, the research instrument and equipment development project of the Chinese Academy of Sciences, and the youth team project of Anguang Institute of Hefei Academy of Materials, Chinese Academy of Sciences.

Figure 1 Calculation framework for boundary value problem of flow velocity profile of multi needle EHD pump

Figure 2 Flow field distribution of multi needle EHD system: (a) When the anode voltage is 4000 volts; (b) When the anode voltage is 4500 volts; (c) When the anode voltage is 5000 volts

Source: Hefei Institute of Physical Sciences, Chinese Academy of Sciences

Recomendaciones relacionadas
  • Innovative laser based rain enhancement project launched by UAEREP and DERC teams

    Recently, the UAE Rainfall Enhancement Scientific Research Program launched a groundbreaking project with Dr. Guillaume Matras and his team from the Directional Energy Research Center of the Institute of Technology Innovation, aiming to address the challenge of global water shortage through advanced technology. This collaboration marks an important milestone in the field of rainfall enhancement sc...

    2024-03-02
    Ver traducción
  • The official launch of FV4000 and FV4000MPE microscopes aims to redefine scientific imaging

    Introduction to FLUOVIEW ™ The FV4000 confocal laser scanning microscope and FV4000MPE multiphoton laser scanning microscope have made breakthroughs in imaging technology, enabling researchers to make new scientific discoveries. The FV4000 and FV4000MPE microscopes aim to redefine scientific imaging, providing higher accuracy, lower noise, and higher sensitivity, setting new standards for im...

    2023-11-03
    Ver traducción
  • Laser giant announces launch of new fiber laser platform

    Recently, Coherent Corp. announced the launch of the EDGE FL TM high-power fiber laser series, tailored specifically for cutting applications in the machine tool industry. The power levels of the EDGE FL series range from 1.5kW to 20kW, redefining the balance between value and performance to meet the growing demand for high-power, reliable laser sources in fiber laser cutting.With the increasing d...

    2024-10-23
    Ver traducción
  • Laser engraving: Researchers have created a revolutionary technology

    Recently, a group of researchers from the University of Cambridge developed an innovative method of using high-energy lasers to improve 3D printing of metals. This discovery has the potential to change the way we design and manufacture complex metal objects.3D printing has completely changed the landscape of the manufacturing industry. However, it faces obstacles, especially in terms of the charac...

    2023-11-24
    Ver traducción
  • Using high-speed scanning remelting technology to achieve AlSi10Mg laser powder bed fusion with excellent strength and plasticity properties

    The development of additive manufacturing (AM) has profoundly changed the manufacturing industry, and this technology has been applied in fields such as food, medicine, automotive, and electronic components. Especially in the aerospace field, where extremely lightweight and high-strength (~500mpa) components are required, aluminum alloy additive manufacturing is considered a very promising solutio...

    2024-10-08
    Ver traducción