Español

A new type of flexible reflective mirror can improve the performance of X-ray microscopy

497
2024-05-06 16:31:46
Ver traducción

A research team in Japan has designed a flexible and shapable X-ray reflector, achieving significant accuracy and higher stability at the atomic level.
This new technology, developed by Satoshi Matsuyama and Takato Inoue from the Graduate School of Engineering at Nagoya University, in collaboration with the Japanese Institute of Physical and Chemical Research and JTEC Corporation, improves the performance of X-ray microscopy and other technologies that use X-ray mirrors. The relevant results were published in the journal Optica.

A new type of deformable mirror for X-ray microscopy, achieving high image resolution through wavefront correction.


X-ray microscope is an advanced imaging tool that serves as a bridge between electron microscopy and optical microscopy. It uses X-rays that provide better resolution than light and can penetrate thick samples that electrons cannot penetrate. This enables imaging of structures that are difficult to see with other microscopy techniques.

X-ray microscopes have high resolution, making them particularly important in fields such as materials science and biology, as they can observe the composition, chemical state, and structure inside samples.

Reflectors play a crucial role in X-ray microscopy. They can reflect X-ray beams and perform high-resolution imaging on complex structures. High quality images and accurate measurements are essential, especially in cutting-edge scientific fields such as catalyst and battery detection.
However, due to the small wavelength of X-rays, they are easily distorted due to small manufacturing defects and environmental influences. This will generate wavefront aberrations, thereby limiting the resolution of the image. Matsuyama and his collaborators solved this problem by creating a deformable mirror and adjusting its shape based on the detected X-ray wavefront.

The X-ray microscopy images showed higher resolution after using the new deformable mirror. The left and right images are the images before and after shape correction, respectively.

In order to optimize their mirrors, researchers studied piezoelectric materials. These materials are very useful because they can deform or change shape when an electric field is applied. In this way, even if there is a slight deviation in the detected radio waves, the material can reshape its own shape and respond accordingly.

After considering various compounds, researchers chose lithium niobate single crystal as a shape changing mirror. Single crystal lithium niobate is very useful in X-ray technology because it can expand and contract under the action of an electric field, and form a high reflective surface through polishing. This allows it to serve as both an actuator and a reflective surface, simplifying the equipment.

Matsuyama said, "Traditional X-ray deformable mirrors are made by bonding glass substrates and PZT plates. However, connecting different materials together is not ideal and can lead to instability. To overcome this problem, we used single crystal piezoelectric materials, which are made of uniform materials and do not require bonding, thus having extremely high stability. Due to their simple structure, the mirror can freely deform, achieving atomic level accuracy. In addition, this accuracy can be maintained for 7 hours, confirming its extremely high stability.".

When testing their new equipment, Songshan's team found that their X-ray microscope exceeded expectations. Its high resolution makes it particularly suitable for observing microscopic objects, such as semiconductor device components.

Compared to the spatial resolution of traditional X-ray microscopes (usually 100 nanometers), their technology has the potential to develop microscopes with a resolution about 10 times higher (10 nanometers) because aberration correction makes them closer to the ideal resolution.
Matsuyama said, "This achievement will drive the development of high-resolution X-ray microscopes, which have always been limited by manufacturing process accuracy. These mirrors can also be applied to other X-ray equipment, such as lithography equipment, telescopes, CT in medical diagnosis, and X-ray nanobeam formation."

Related links: https://phys.org/news/2024-05-mirror-flexibly-ray-microscopes.html

Source: Physicist Organization Network

Recomendaciones relacionadas
  • Webasto joins hands with Tongkuai to lead the new trend of electric vehicle technology

    In the process of selecting electric vehicles, the effectiveness of the heating system is often overlooked. However, this system is crucial for providing a warm and comfortable driving environment and removing frost and fog from winter windows. More importantly, it can also improve battery efficiency, as the battery performs best within a specific temperature range.Unlike internal combustion engin...

    2024-06-12
    Ver traducción
  • New laser technology unlocks deuterium release in aluminum layers

    In a recent study, quadrupole mass spectrometry was used to measure the number of deuterium atoms in the aluminum layer.A recent study led by the National Institute of Laser, Plasma, and Radiation Physics and Sasa Alexandra Yehia Alexe from the University of Bucharest explored the details of laser induced ablation and laser induced desorption techniques using a 1053 nm laser source. The study was ...

    2023-11-25
    Ver traducción
  • NSF funding for collaboration between researchers from Syracuse University and Cosmic Explorer

    Billions of years ago, in a distant galaxy, two black holes collided, triggering one of the most extreme cosmic events in the universe. The power of this phenomenon is so great that it distorts the structure of spacetime, emitting ripples called gravitational waves.These waves will eventually be detected on Earth by the Advanced Laser Interferometer Gravity Wave Observatory (LIGO) detector, and te...

    2023-10-13
    Ver traducción
  • Chuangxin Laser Industry Dedicated Laser and Solutions Help Promote the Intelligent Development of Cladding Application Industry

    Laser cladding technology, also known as laser additive manufacturing technology, uses high-energy laser as the heat source and metal alloy powder as the cladding material. Through the synchronous action of laser and alloy powder on the metal surface, it quickly melts to form a molten pool, and rapidly solidifies to form a dense, uniform, and controllable thickness metallurgical bonding layer, the...

    2023-11-01
    Ver traducción
  • Emerson launches a new type of laser welding machine that can efficiently and flexibly process medical precision components

    Recently, Emerson, the global leader in industrial automation, launched the all-new Branson ™ The GLX-1 laser welding machine, with its outstanding flexibility and innovative technology, accurately meets the urgent market demand for connecting small, complex or delicate plastic components. Its compact volume and modular design make it easy to integrate into the ISO-8 cleanroom environment, while t...

    2024-06-04
    Ver traducción