Español

Zhejiang University has prepared ultra strong and tough 3D printing elastic materials

174
2024-07-06 10:39:46
Ver traducción

Professor Xie Tao and researcher Wu Jingjun from the School of Chemical Engineering and Biotechnology at Zhejiang University have designed a new type of photosensitive resin and used it to create a "super rubber band" that can stretch to over 9 times its own length and lift 10 kilograms of objects with a "body" with a diameter of 1 millimeter through 3D printing. The relevant results were recently published in the international academic journal Nature.

Comparison diagram of "Super Rubber Band" before and after stretching. The left image shows before stretching, and the right image shows after stretching. Research team provides images

Different from the layer by layer printing method, UV cured 3D printing technology is like printing photos, using ultraviolet laser to cure photosensitive resin. The product is "exposed" and "developed" from the printing material, making the printing process faster and closer to industrial application standards. However, UV cured 3D printed products are often brittle and prone to breakage, mainly used for printing models and not suitable for scenarios with high mechanical performance requirements.

"In order for 3D printing technology to adapt to more scenarios, it is necessary to change the material properties," said Fang Zizheng, the first author of the paper and a researcher at the Hangzhou International Science and Technology Innovation Center of Zhejiang University. The research team first focuses on the reactivity and flowability of the material during the printing stage to meet the requirements of material forming, and then performs toughening treatment after printing and forming.

Fang Zizheng said that the team added dynamically hindered urea bonds, polyurethane segments, and carboxyl groups to existing photosensitive resin molecules. During the stage of printing precursor materials, they are in a "latent" state. After printing, the finished product will be transferred to a 90 degree Celsius "oven" and left to stand for a while, and the molecular structure and properties of the material will quietly change.

It is understood that researchers printed a "rubber band" using this new type of resin and conducted endurance tests on it. Experiments have shown that rubber bands can be stretched to 9 times their own length and withstand a tensile force of 94 megapascals without breaking. In addition, researchers have also used this material to prepare balloons and other objects with excellent puncture resistance.

Wu Jingjun stated that the strength and toughness of this photosensitive resin material far exceed similar materials reported in existing literature and commercial products. This research progress brings dawn to the breakthrough of material limitations in 3D printing technology and its large-scale application in high-performance product manufacturing.

Source: Science and Technology Daily

Recomendaciones relacionadas
  • Thorlabs announces acquisition of Praevium Research

    On January 13, 2025, Thorlabs announced the acquisition of long-term partner Praevium Research, a developer of high-speed tunable VCSEL. In the future, Praevium will continue to operate as a department of Thorlabs under the name Praevium Research at its existing locations in California, while retaining its current leadership.It is understood that Christopher Burgner will serve as the general man...

    01-16
    Ver traducción
  • 3D printed nanocellulose for green building applications

    The hydrogel material made of nano cellulose and algae was tested as an alternative and more environmentally friendly building material for the first time. This study from Chalmers Institute of Technology and the Wallenburg Wood Science Center in Sweden demonstrates how to 3D print rich sustainable materials into various building components, using much less energy than traditional building methods...

    2024-02-19
    Ver traducción
  • Laser direct writing technology for preparing micrometer scale heatable graphene de icing and anti icing surfaces broadens the preparation method of new de icing and anti icing devices

    Research backgroundIn transportation, industrial production, and practical life, icing often brings great troubles, and the most serious is that during the flight of an aircraft, key components once frozen will seriously affect navigation safety.The traditional passive deicing and anti icing strategies for aircraft, such as mechanical vibration and anti freezing liquids, have problems such as inco...

    2023-10-16
    Ver traducción
  • Toshiba has developed the world's highest precision 99.9% LiDAR technology

    Recently, Toshiba announced that in the field of LiDAR lidar for distance measurement, it has developed a technology that can track vehicles, people, and other objects with 99.9% accuracy, achieving the world's highest accuracy. And only using LiDAR to collect data can achieve 98.9% object recognition.In addition, the detection distance in rainstorm and dense fog environments has been increased by...

    2023-10-06
    Ver traducción
  • Photonic hydrogel of high solid cellulose with reconfigurability

    Recently, Qing Guangyan, a researcher team from the Research Group on Bioseparation and Interface Molecular Mechanism (1824 Group) of Biotechnology Research Department of Dalian Institute of Chemical Physics, Chinese Academy of Sciences, designed and prepared a highly solid cellulose photonic hydrogel with reconfigurability and mechanical discoloration. This preparation method opens up a new way t...

    02-17
    Ver traducción