Español

China University of Science and Technology has made progress in the study of the regulatory mechanism of thermally induced delayed fluorescence

354
2024-06-28 10:55:03
Ver traducción

Recently, Professor Zhou Meng's research group at the University of Science and Technology of China collaborated with Professor Fu Hongbing's team at the Capital Normal University to reveal the mechanism by which aggregation effects regulate the luminescent properties of thermally delayed fluorescent materials. The research findings, titled "Aggregation Enhanced Thermally Activated Delayed Fluoroscopy through Spin Orbit Coupling Regulation," were published in the German Journal of Applied Chemistry and selected as a hot topic article.

Integrating aggregation induced emission (AIE) effects into thermally delayed fluorescence (TADF) luminescent materials can provide enormous potential for the development of efficient organic light-emitting diodes (OLEDs). Although some progress has been made in the synthesis and fabrication of such materials and devices, there is still a lack of understanding of the corresponding theoretical mechanisms. In this work, the research team aims to regulate TADF by controlling the dynamic process of excited states through aggregation effects.

Research has found that aggregation not only enhances both immediate and delayed fluorescence, but also exerts binding effects on the conformational changes of excited states of molecules. This confinement not only enhances spin orbit coupling (SOC), but also reduces the energy difference (DEST) between singlet and triplet states. This work reveals the understanding of the basic mechanism of aggregation effect regulating TADF, providing guidance for the design of efficient photoluminescence materials.

The research team first analyzed the aggregation effect of the target material DCzBF2 on the regulation of TADF under N2 and O2 atmospheres. Research has found that both in N2 and O2 atmospheres, DCzBF2 exhibits a significant aggregation enhancing luminescence effect. Meanwhile, it was found that the relative ratio of immediate fluorescence and delayed fluorescence of DCzBF2 remained unchanged with the enhancement of aggregation effect in N2 atmosphere.

Using ultrafast spectroscopy research, it was found that the excited state conformational changes of molecules after aggregation were significantly suppressed. However, the ultrafast spectrum did not capture the TADF process in the liquid phase, but it did capture the corresponding process in the membrane phase. Quantitative calculations reveal that this is due to the suppression of the conformational rotation of molecules in the membrane phase, which enhances the SOC between singlet and triplet states involved in inter system crossing (ISC) processes and reduces the corresponding DEST, resulting in a strong triplet signal. Finally, the author studied the influence of different aggregation levels on the excited state relaxation process. The study found that an enhanced aggregation effect would slow down the excited state relaxation process, and there was also an excited state conformational change process at low aggregation levels, while at high aggregation levels, the excited state conformational change was completely suppressed.

This study demonstrates the feasibility of integrating the AIE effect in TADF materials and reveals the corresponding working mechanism. Research has found that with the enhancement of aggregation effect, immediate fluorescence and delayed fluorescence gradually increase, but aggregation effect does not change the ratio between singlet radiation rate and ISC rate. In addition, ultrafast spectroscopy and theoretical calculations in solutions and thin films further reveal that enhancing SOC and reducing DEST are the essential reasons for aggregation enhanced TADF.

Zhang Weite, Associate Researcher at the University of Science and Technology of China, is the first author of the paper; Professor Zhou Meng from the University of Science and Technology of China, Associate Researcher Kong Jie, and Professor Fu Hongbing from the Capital Normal University are the corresponding authors of this paper. This work has been supported by the Chinese Academy of Sciences and the National Natural Science Foundation of China.

Source: University of Science and Technology of China

Recomendaciones relacionadas
  • A research team at City University of Hong Kong has developed a multispectral, ultra-low dose photoacoustic microscope system

    Optical resolution "photoacoustic microscope is a new biomedical imaging technology, which can be used in the research of cancer, diabetes, stroke and other diseases. However, insufficient sensitivity has always been a long-term obstacle to its wider application.According to Maims Consulting, a research team from City University of Hong Kong (CityU) has recently developed a multispectral, ultra-lo...

    2023-09-21
    Ver traducción
  • Xi'an Institute of Optics and Fine Mechanics has made progress in the field of integrated microcavity optical frequency comb

    Recently, researcher Zhang Wenfu from the National Key Laboratory of Ultrafast Optical Science and Technology of Xi'an Institute of Optics and Mechanics, researcher Chen Wei from the academician team of Guo Guangcan from the Key Laboratory of Quantum Information of the Chinese Academy of Sciences of the University of Science and Technology of China, and professor Yang Jun from the School of Intell...

    02-19
    Ver traducción
  • Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory Achieves New Breakthrough

    On February 7th, at the Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory located in the HGTECH Technology Intelligent Manufacturing Future Industrial Park, Huang Wei, the technical director of the laboratory and the director of HGTECH Technology's semiconductor product line, gestured with his hands to introduce the principle of "glass through-hole technology" to Changjiang ...

    02-18
    Ver traducción
  • Hyperspectral imaging technology: a comprehensive guide from principles to applications

    Hyperspectral imaging technology is a highly anticipated innovation in the field of science and engineering today. It not only integrates spectroscopy and imaging technology, but also has wide applications in various industries and research fields. This article will delve into the basic principles, working mechanisms, and applications of hyperspectral imaging in different fields.Introduction to hy...

    2024-04-16
    Ver traducción
  • APE 2025 is about to take place

    The Asia Optoelectronic Expo 2025 (APE 2025) will be held from February 26 to 28, 2025 at the Marina Bay Sands Convention and Exhibition Centre in Singapore. It covers products such as information and communication, optics, lasers, infrared, sensing, display, quantum, and is a one-stop optoelectronic comprehensive platform for the optoelectronic industry and application fields; The exhibition focu...

    02-18
    Ver traducción