Español

TriLite has partnered with AMS OSram to develop AR smart glasses displays

1037
2023-09-06 15:43:20
Ver traducción

TriLite has announced a technical collaboration with ams OSRAM, a global leader in smart sensors and transmitters. Ams Osram will supply its sub-assembled RGB laser diode to "light up" TriLite's Trixel® 3 laser beam scanner (LBS), the world's smallest AR smart glasses projection display.

The award-winning Trixel® 3 LBS offers breakthrough compactness and light weight, as well as a bright and accurate display. It has ultra-low power consumption for all-day use, enabling excellent image quality. Trixel 3 provides AR capabilities for smart glasses and a wide range of consumer applications.

Dr. Peter Weigand, CEO of TriLite, said: "Our ecosystem strategy focuses on partnering with world leaders to ensure high quality and reliable manufacturing at scale. "We chose AMS Osram as one of our technology partners because its laser light source delivers best-in-class power and efficiency, fully meeting the brightness, contrast and high performance requirements of our Trixel 3 LBS projectors."

TriLite is designed for seamless mass manufacturing, incorporating custom standard components and utilizing state-of-the-art high-volume production equipment. The result is an ultra-compact optical display engine with a brightness of 15 lumens that ensures easy readability even in direct sunlight. Its low system latency enables AR images to naturally blend with the wearer's surroundings and movements, providing an immersive AR experience that exceeds consumer expectations. In addition, Trixel 3 is fully compatible with state-of-the-art waveguides and does not require any relay optics, effectively saving space and weight.

Trilite's ultra-compact, lightweight Trixel® 3 Laser Beam Scanner (LBS) optical display engine combines a single 2D MEMS mirror, all optical components, and a unique trajectory control module (TCM) that moves the complexity of optical modules from hardware to software. LBS modules weigh less than 1.5g and are less than 1cm in volume 3.

Ams OSram joins TriLite's rapidly expanding manufacturing partner ecosystem. Its expertise and industry-leading laser diodes combined with high-volume manufacturing capabilities further enhance TriLite's vision for the future of AR smart glasses.

Source: Laser Network

Recomendaciones relacionadas
  • The physicist who built the ultrafast "attosecond" laser won the Nobel Prize

    Pierre Agostini, Ferenc Krausz, and Anne L'Huillier won the award for their ultra short optical pulses, which made close research on electrons possible.Ferenc Klaus, Anne Lullier, and Pierre Agostini (from left to right)Image sources: BBVA Foundation, Kenneth Ruona/Lund University, Ohio State UniversityThis year's Nobel Prize in Physics was awarded to three physicists - Pierre Agostini of Ohio St...

    2023-10-09
    Ver traducción
  • Researchers Obtaining Scientific Returns from Raman Spectroscopy for External Bioexploration Using Lasers

    We investigated the potential of laser selection in a wide optical range from ultraviolet to visible light, and then to infrared (excitation wavelengths of 325, 532, 785, and 1064 nm), in order to combine and analyze extreme microorganisms related to Earth (such as Cryptomeria elegans, cold floating nematodes, and circular green algae), carbon water compound molecules, as well as simulated mineral...

    2023-10-23
    Ver traducción
  • Ecken develops a new type of iron silicon powder for 3D printing of motors

    Through the SOMA project funded by the European Union, organic silicon material expert Aiken has collaborated with research partners and clients to develop a new specialized iron silicon powder that can more efficiently 3D print motor components.Yesterday's electric motor was usually made by cutting and shaping parts from a metal plate. 3D printing can fundamentally improve efficiency and...

    2024-01-20
    Ver traducción
  • Semiconductor lasers will support both TE and TM modes

    Typically, for lasers in optical communication systems, waveguide designs are used to achieve a single transverse mode. By adjusting the thickness of the surrounding area of the cladding layer and the etching depth of the ridge in the ridge waveguide device, a single mode device can be obtained. The importance of lasers is reflected in the following aspects:A chip without ridge waveguide design an...

    2023-10-20
    Ver traducción
  • MIT researchers have demonstrated a novel chip based resin 3D printer

    Researchers from the Massachusetts Institute of Technology and the University of Texas at Austin showcased the first chip based resin 3D printer. Their concept verification tool consists of a millimeter sized photon chip that emits a programmable beam of light into resin holes, which solidify into a solid structure when exposed to light.The prototype processor does not have mobile components, but ...

    2024-06-17
    Ver traducción