Español

Multi functional materials for solar cells and organic light-emitting diodes to achieve high performance and stability

773
2024-06-03 14:48:38
Ver traducción

Through joint research, a team developed a 4-amino-TEMPO derivative with photocatalytic performance and successfully used it to produce high-performance and stable fiber like dye sensitized solar cells (FDSSCs) and fiber like organic light-emitting diodes (FOLEDs). This paper was published in the journal Materials and Energy Today.

The developed 4-amino-TEMPO derivatives have the characteristic of simultaneously improving the performance of fiber like dye sensitized solar cells (FDSSCs) and fiber like organic light-emitting diodes (FOLEDs).

Traditional materials are difficult to synthesize and produce on a large scale, and the reproducibility of devices using them is poor. The 4-amino-TEMPO derivative developed by the research team not only has a simple synthesis process and can be synthesized in large quantities, but also enhances the performance of FDSSCs and FOLEDs, improving the performance of these two electronic devices by more than 20%.

The research team, including Professor Chul Jin Ahn from Changyuan National University, as well as Dr. Jae Ho Kim and Dr. Myung kuan Song from the Energy and Electronic Materials Department of the Department of Surface and Nanomaterials, designed and synthesized a material with photocatalytic performance to improve the efficiency of FDSSC.

Synthetic materials exhibit high stability in both air and moisture, making them suitable for producing high-performance FDSSC and FOLED. In addition, it has been confirmed that it has excellent washing performance and resistance to mechanical impact.

4-Amino-TEMPO derivatives are applied in various electronic device fields, including solid electrolytes in lithium batteries, catalysts, solar cells, and organic light-emitting diodes. The uniqueness of this technology lies in its ability to produce on a large scale through simple processes, coupled with its cost-effectiveness. In addition, it provides versatility rather than a single function, making it widely applicable to various electronic applications.

These derivatives can be mass-produced at low cost, with less than 1 million Korean won per 100 grams. Utilizing this technology for local and large-scale production may bring unprecedented economic benefits to electronic equipment companies.

Dr. Song Mingkuan, the chief researcher of this study, said, "By utilizing multifunctional materials, we can improve the performance and reliability of electronic devices. We expect to apply them in different fields, including energy production and storage materials, as well as sensor materials."

The research team is continuing further research to use 4-amino-TEMPO derivatives for organic solar cells, perovskite solar cells, and organic light-emitting diodes, with the goal of mass production within a few years.

Source: Laser Net

Recomendaciones relacionadas
  • New, low-cost, and high-efficiency photonic integrated circuits

    The rapid development of photonic integrated circuits (PICs) has combined multiple optical devices and functions on a single chip, completely changing optical communication and computing systems.For decades, silicon-based PICs have dominated the field due to their cost-effectiveness and integration with existing semiconductor manufacturing technologies, despite their limitations in electro-optic ...

    2024-05-10
    Ver traducción
  • Accelerating electrons by emitting laser light into a nanophotonic cavity

    The laser driven particle accelerator on silicon chips was created by two independent research groups. With further improvements, this dielectric laser accelerator can be used in medicine and industry, and even in high-energy particle physics experiments.Accelerating electrons to high energy is usually accomplished over long distances in large and expensive facilities. For example, the electron ac...

    2023-10-28
    Ver traducción
  • Using laser welding technology to manufacture rotor shafts at the speed of light

    How can EMAG Laser Technology accelerate the production of critical powertrain components using its flagship product ELC 6 system?The rapid popularity of electric vehicles worldwide indicates that production planners must increase their efforts in producing key components of electric vehicles, particularly the rotor shaft. The importance of the rotor shaft as the core component for converting elec...

    2024-07-17
    Ver traducción
  • SILICON AUSTRIA LABS and EV GROUP Strengthen Cooperation in Optical Technology Research

    EV Group, a leading supplier of wafer bonding and lithography equipment for the MEMS, nanotechnology, and semiconductor markets, and Silicon Austria Labs, a leading electronic systems research center in Austria, announced that SAL has received and installed multiple EVG lithography and photoresist processing systems in its MicroFab at the R&D cleanroom facility in Filach, Austria.These devices...

    2023-11-15
    Ver traducción
  • Jenoptik Jenoptik Group's new factory officially completed in Germany

    After two and a half years of construction, Jenoptik Jenoptik Group's new factory in Dresden, Germany has been officially completed, marking the company's largest single investment in recent times. Jenoptik stated that by expanding its production and research and development capabilities in micro optical devices, it will provide high-precision sensor production technology for high-performance chip...

    05-16
    Ver traducción