Español

Shanghai Optics and Machinery Institute has made new progress in laser welding of new high-temperature nickel based alloys

850
2023-09-01 14:42:55
Ver traducción

Recently, the research team of Yang Shanglu from the Laser Intelligent Manufacturing Technology R&D Center of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Machinery has made new progress in laser welding of new structural materials for high-temperature molten salts. The research team used a high-power laser for the first time to achieve defect free welding of nickel based high-temperature alloys, and conducted a systematic evaluation of the microstructure and mechanical properties of the welded joints.

The relevant research results were published in the Materials Characterization under the title "Laser welding of GH3539 alloy for molten salt reactor: processing optimization, microstructure and mechanical properties".

GH3539 alloy is a new type of high-temperature nickel based alloy independently developed in China, with excellent high-temperature mechanical and corrosion resistance, suitable for ultra-high temperature (≥ 850 ℃) molten salt environments. However, higher alloying results in higher welding crack sensitivity of the alloy.

In order to achieve efficient and high-quality laser welding of alloy structural components, the team used fiber laser welding technology to study the effects of different welding process parameters on the welding formation of GH3539 alloy with a thickness of 3mm. Through process optimization, the generation of welding cracks, pores, and other defects was suppressed. For the first time, defect free welding formation of GH3539 alloy was achieved. Based on this, the microstructure and mechanical properties at room temperature/high temperature of the welded joint were systematically evaluated; And analyzed the tensile fracture behavior of laser welded joints, elucidated the fracture mode of alloy laser welded joints. This work has laid the foundation for promoting the development of laser welding technology and the application of GH3539 nickel based high-temperature alloy.

Figure 1: (a) Welding cross-section of GH3539 laser welded joint; (b) Microstructure of GH3539 alloy; (c) XRD results of GH3539 alloy laser welded joints; (d) Hardness distribution of GH3539 alloy laser welded joints; (e) Engineering stress-strain curves of base metal and welded joints at different temperatures; (f) Average elongation of base metal and welded joints at different temperatures

Source: Shanghai Institute of Optics and Mechanics

Recomendaciones relacionadas
  • The latest progress in laser chip manufacturing

    Modern computer chips can construct nanoscale structures. So far, only these tiny structures can be formed on top of silicon chips, but now a new technology can create nanoscale structures in a layer beneath the surface. The inventor of this method stated that it has broad application prospects in the fields of photonics and electronics, and one day, people can manufacture 3D structures on the ent...

    2024-07-29
    Ver traducción
  • Han's Laser senior management resigns

    Just now, Han's Laser Technology Industry Group Co., Ltd. announced the resignation of senior management personnel. The board of directors recently received a written resignation report from Mr. Zhao Guanghui, the deputy director of the company's management and decision-making committee. Mr. Zhao Guanghui has applied to resign from his position as deputy director of the company's management and de...

    06-09
    Ver traducción
  • BluGlass received its first order α GaN DFB laser

    Global semiconductor developer BluGlass Limited has received its first α Purchase order for gallium nitride distributed feedback laser.This client is a pioneer in photon and fiber laser technology and will use BluGlass's blue prototype DFB laser to develop cutting-edge defense, aviation, and scientific applications.Quantum sensing, navigation, and computing applications are driving a huge de...

    2024-01-10
    Ver traducción
  • What are double- and triple-stack hybrid stepper motors

    Of the three primary stepper motor designs — permanent magnet, variable reluctance, and hybrid — hybrid stepper motors are arguably the most popular in industrial applications, combining the best performance characteristics of permanent magnet and variable reluctance types.Hybrid stepper motors are constructed with a rotor made of two sections, or cups, with a permanent magnet between ...

    2023-09-16
    Ver traducción
  • From Colored Glass Windows to Lasers: Nanogold Changes Light

    For a long time, craftsmen have been fascinated by the bright red color produced by gold nanoparticles scattered in colored glass masterpieces. The quantum origin of this optical miracle has always been mysterious, until modern advances in nanoengineering and microscopy revealed the complexity of plasma resonance.Now, researchers are preparing to push nano plasma technology, which was once used fo...

    2024-01-02
    Ver traducción