Español

Three core processes of laser soldering support the development of PCB electronics industry

381
2024-04-15 16:43:52
Ver traducción

In the field of modern electronic manufacturing, PCB (printed circuit board) serves as the carrier of electronic components. In its manufacturing process, laser soldering technology has become a key link in PCB electronic manufacturing due to its advantages of high precision, high efficiency, and low thermal impact. This article will explore the application of laser soldering technology and its main soldering materials - tin wire, solder paste, and solder balls - in PCB electronic manufacturing.

01
Laser Tin Wire Welding for PCB Circuit Board Welding
Tin wire plays an important role in laser soldering process. After focusing the laser beam, it can quickly melt the tin wire, achieving reliable connection between components and PCB boards. This welding method not only reduces the thermal stress generated during the welding process, but also effectively improves the welding quality and reduces the welding defect rate.
Laser tin wire welding has the advantages of high precision and high efficiency, and is suitable for situations with high requirements for welding quality. By adjusting the laser power and focal length, precise welding of PCB boards with different materials and thicknesses can be achieved.

02
Laser solder paste welding for PCB circuit board welding
Solder paste is mainly used for soldering surface mount components. After coating an appropriate amount of solder paste on the PCB board, the components are heated by a laser soldering machine to melt the solder paste and penetrate into the gap between the components and the PCB board, forming a solid solder joint.
Solder paste welding has the characteristics of simple operation and fast welding speed, making it suitable for efficient welding on large-scale production lines. In addition, solder paste welding can also reduce production costs and improve welding quality.

03
Laser solder ball welding for PCB circuit board welding
Tin balls, as a new type of soldering material, have received widespread attention in the field of laser soldering in recent years. The laser beam quickly melts the solder balls and accurately drips them onto the solder joints, achieving the welding between the components and the PCB board.
Tin ball welding has the advantages of high welding accuracy and low heat impact, making it particularly suitable for high-end electronic products that require high welding quality, such as BGA chips, wafers, hard disk heads, camera modules, and optoelectronic products.

04
The Future Development of Laser Soldering Technology
In the field of PCB electronic manufacturing, the emergence of laser soldering technology, combined with perfect soldering materials such as tin wire, solder paste, and solder balls, has brought revolutionary changes to the entire electronics industry and injected a continuous stream of vitality. In the future, with the continuous development of technology, we believe that laser soldering technology will play a more important role in the electronics industry, bringing more convenience and surprises to our lives.

05
The advantages of laser soldering technology
The perfect combination of laser soldering technology and various soldering materials further improves the welding quality. Not only has it subverted traditional soldering methods, but it has also significantly reduced production costs and defect rates while improving welding efficiency and quality, laying a solid foundation for the sustainable development of the electronic manufacturing industry.

Soldering materials such as tin wire, solder paste, and solder balls, under the action of laser, can not only quickly melt and achieve perfect fusion with the parts to be welded, ensuring the strength and stability of the welded joint, but also avoiding adverse phenomena such as virtual soldering and cold soldering that may occur in traditional soldering. The high-speed characteristics of laser welding significantly improve production efficiency, providing strong support for the large-scale production of electronic products.

In addition, laser soldering technology also has high flexibility. By adjusting the laser power and focal length, precise welding of PCB boards with different materials and thicknesses can be achieved. This flexibility makes laser soldering technology more widely used in the field of PCB electronics, meeting the needs of different customers.

Source: Zichen Laser

Recomendaciones relacionadas
  • 3D printed nanocellulose for green building applications

    The hydrogel material made of nano cellulose and algae was tested as an alternative and more environmentally friendly building material for the first time. This study from Chalmers Institute of Technology and the Wallenburg Wood Science Center in Sweden demonstrates how to 3D print rich sustainable materials into various building components, using much less energy than traditional building methods...

    2024-02-19
    Ver traducción
  • SEMA 2023: Huali's Easy Level Floating Free Laser Fuel Level Transmitter

    Winning the SEMA Best Engineering New Product Award is not an easy task. Therefore, it said a lot about Huali's new non floating fuel transmitter bringing hardware home. The Easy Level fuel level sender is a brand new design that does not rely on traditional float arm settings, but uses a frikken laser beam to measure the fuel level in the tank.More precisely, Easy Level uses LiDAR technology to m...

    2023-11-03
    Ver traducción
  • An innovative technology that can make light "bend"

    A research team from the University of Glasgow in the UK drew inspiration from the phenomenon of clouds scattering sunlight and developed an innovative technology that can effectively guide or even "bend" light. This technology is expected to achieve significant breakthroughs in fields such as medical imaging, cooling systems, and even nuclear reactors. The relevant research results were published...

    2024-11-11
    Ver traducción
  • Lithuanian and Japanese researchers develop silver nanolaser

    Recently, researchers from Kaunas University of Technology (KTU) in Lithuania and the Tsukuba National Institute of Materials Science in Ibaraki, Japan, have collaborated to successfully develop a new type of nanolaser based on silver nanocubes.Although its structure is small and can only be observed through high-power microscopes, its potential application prospects are broad, and the research te...

    2024-12-24
    Ver traducción
  • Researchers have placed photon filters and modulators on standard chips for the first time

    Researchers at the University of Sydney combined photon filters and modulators on a single chip, enabling them to accurately detect signals on the broadband RF spectrum. This work brings photonic chips closer to one day, potentially replacing larger and more complex electronic RF chips in fiber optic networks.The Sydney team utilized stimulated Brillouin scattering technology, which involves conve...

    2023-12-26
    Ver traducción