Español

New laser technology can achieve more efficient facial recognition

500
2024-06-24 14:15:46
Ver traducción

Recently, the latest research report from FLEET, an interdisciplinary research team in Australia, revealed a significant leap in laser technology, achieving unprecedented levels of spectral purity.

Spectral purity, which refers to the degree of matching of a single light frequency (or color) generated by a laser, is an important indicator for measuring laser performance. By using a scanning Fabry Planck interferometer, researchers accurately measured the spectral purity of the laser and found that its linewidth was extremely narrow, only 56 MHz or 0.24 μ eV, which was ten times smaller than previous records.

This milestone progress enables polarized lasers to compete with industry-leading VCsel technology, especially in applications such as facial recognition and augmented reality. Importantly, polarized lasers not only have excellent performance, but also are more energy-efficient. Their working power is lower, thanks to their unique boson condensation state, in which light generation does not require the massive energy required by traditional lasers.

This feature has enormous potential for application in the field of biometrics, especially in facial recognition. Although vertical cavity surface emitting lasers (VCSELs) are widely used in facial recognition devices due to their high efficiency and reliability, polarized lasers provide a more energy-efficient option. Without sacrificing performance, they can make facial recognition devices more energy-efficient, which helps promote the sustainable development of related technologies.

In addition, the research report also reveals another major advantage of polarized exciton lasers: they can maintain high spectral purity even when overlapping with poorly organized particles. This used to lead to severe noise and performance degradation, but research teams have found that as long as polarons are placed in enclosed spaces, the noise generated by these particles can be minimized. This characteristic makes polarized exciton lasers more practical in various biometric systems that require reliable operation.

It is worth mentioning that the narrow linewidth of polaron lasers endows them with extremely long coherence time. Coherence time refers to the time it takes for a laser to maintain high-quality light, which is crucial for fast and continuous execution of thousands of operations, especially in advanced applications such as quantum computing. The coherence time of polaron lasers is at least 5.7 nanoseconds, which may seem brief but is sufficient to meet the needs of these advanced applications.

In summary, the research results of the FLEET team not only demonstrate the tremendous progress of laser technology, but also bring new energy-saving and efficient choices for biometric fields such as facial recognition. With the continuous development and improvement of technology, we have reason to believe that polarized lasers will lead a revolution in facial recognition technology in the future.

Source: OFweek

Recomendaciones relacionadas
  • Deep Photon Network Platform, Empowering Any Functional Photon Integrated Circuit

    The widespread application in the fields of optical communication, computing, and sensing continues to drive the growing demand for high-performance integrated photonic components. Recently, Ali Najjar Amiri of Kochi University in Türkiye and other scholars proposed a highly scalable and highly flexible deep photonic network platform, which is used to realize optical systems on chip with arbi...

    2024-03-11
    Ver traducción
  • The Future of Data Center Communication: Quantum Dot Semiconductor Comb Laser

    In the constantly evolving field of technology and data communication, researchers have made significant breakthroughs: developing a continuous wave O-band quantum dot semiconductor comb laser for wavelength division multiplexing optical interconnection. With its impressive performance characteristics, this development is expected to completely change the way we manage and transmit data, especiall...

    2024-02-21
    Ver traducción
  • Infinira launches an optical solution for 1.6 Tbps ICE-D data centers

    Infinira, an expert in optical network solutions, announced the launch of a high-speed data center optical transmission module based on single-chip indium phosphide (InP) photonic integrated circuit (PIC) technology. The company claims that the module will connect at a speed of 1.6 terabits per second (Tb/s), while reducing the cost and power consumption per bit.Yingfeilang stated that its data ce...

    2024-03-18
    Ver traducción
  • Leica Measurement System Development First Person Laser Scanner

    Leica Geosystems, a subsidiary of Hexagon, has developed Leica BLK2GO PULSE, its first person laser scanner, which combines LiDAR sensor technology with the original Leica BLK2GO shape. The technology will be released in early 2024.The scanner provides users with a fast, simple, and intuitive first person scanning method that can be controlled through a smartphone and provides real-time full color...

    2023-10-19
    Ver traducción
  • Diamond Light Source and NPL reach a new five-year agreement

    Recently, two leading UK scientific institutions, Diamond Light Source and National Physical Laboratory (NPL), have reached a new five-year agreement to promote joint collaborative efforts.The agreement was approved by signing a Memorandum of Understanding (MoU), which will bring these two institutions together.Diamond Light Source is a national synchrotron facility in the UK known for generating ...

    2024-04-25
    Ver traducción