Español

BMW uses WAAM 3D printing to optimize derivative designs

738
2024-04-13 13:45:50
Ver traducción

BMW explained how to use WAAM (Arc Additive Manufacturing) starting from 2025 to manufacture lighter and stronger automotive components and reduce waste generation, in order to optimize the use of generative design tools.

The demonstrated WAAM process uses aluminum wire raw materials directly deposited through laser welding heads, enabling automotive companies to manufacture lighter and more robust parts than similar large parts.

BMW stated that in order to optimize the parts manufactured using this technology, the combination of manufacturing processes and general new component design is crucial. To this end, BMW is accelerating the use of generative design and working closely with interdisciplinary teams to develop its own algorithms, partially inspired by the natural evolution process.

Karol Virsik, Head of Vehicle Research at BMW Group, said, "What is impressive is how WAAM technology has evolved from research to a flexible tool that can be used not only for testing components, but also for mass production of components." "The use of generative design methods allows us to fully utilize design freedom, thus fully utilizing the potential of technology. Just a few years ago, this was unimaginable."

Although these components have wide welds, BMW engineers have proven that WAAM components can still be used for high loads without the need for precision machining of surfaces.

Since 2021, BMW has been testing this DED process at its additive manufacturing park in Oberschlei ß heim, Germany, where the first batch of components will be produced. BMW expects to increase production in other locations by using existing assembly lines with new software.

BMW stated that the adoption of WAAM technology will not replace SLS technology for more refined parts, but arc additive manufacturing technology is "superior" in terms of possible size and deposition rate of parts.

The company is even considering using WAAM technology to directly produce individual components on assembly lines, as this technology does not require new tools and only requires software changes to manufacture different components.

Source: NetEase Network

Recomendaciones relacionadas
  • The UK team collaborated to evaluate epitaxial materials for surface-coupled lasers

    Sivers Photonics, a leading UK-based supplier of optical fiber communications and III-V semiconductor Photonics devices, has announced that it has received an initial order from UK-based laser developer Vector Photonics to evaluate epitaxial materials for a new next-generation surface-coupled laser project.The order, which includes laser manufacturing and life testing, will be the first time the t...

    2023-09-11
    Ver traducción
  • NUBURU will enter a new stage of diversified development

    Recently, NUBURU, a global developer of high-power and high brightness industrial blue light laser technology, announced the signing of a strategic commitment letter, officially launching a deep layout in the field of national defense and security. This transformation plan covers capital restructuring, technology mergers and acquisitions, and management team upgrades, marking a new stage of divers...

    02-26
    Ver traducción
  • Lumibird signs a 20 million euro contract to provide laser rangefinders for airborne defense applications

    Recently, European laser technology leader Lumibird announced the signing of a major contract to provide laser rangefinders for airborne defense applications.The contract is worth approximately 20 million euros, adding to Lumibird's existing business in laser rangefinders. It covers the supply of over 100 laser rangefinders over a three-year period starting from the third quarter of 2024, as well ...

    2023-10-01
    Ver traducción
  • Laserline introduces the first blue 4 kW laser

    Laserline will once again showcase its latest laser systems for joining and deposition welding at this year's Welding & Cutting show in Hall 5. This time the focus is on the world's first blue diode laser with an output power of 4 kW, which is said to have been developed for processing copper components.Its 445 nanometer wavelength is absorbed by copper and copper alloys, which is five t...

    2023-09-06
    Ver traducción
  • 20W High Power Fiber Optic Frequency Comb with 10 to 19 Power Outside Ring Frequency Stability

    High power optical frequency combs play a crucial role in nonlinear precision spectroscopy, extreme ultraviolet optical frequency comb generation, nuclear atomic clock research, and other fields. Fiber optic femtosecond lasers are the preferred solution for achieving high power optical frequency combs due to their simple structure, stable performance, and easy amplification. However, due to the un...

    2023-10-20
    Ver traducción