Español

Research has shown that patterns on crystals can double the optical sensitivity of photodetectors

861
2024-04-01 14:30:57
Ver traducción

Scientists from the Institute of Automation and Control Process at the Far East Branch of the Russian Academy of Sciences described the changes on the surface of monocrystalline silicon during laser processing. The author of this study placed the crystal in a methanol solution and applied a laser pulse lasting one thousandth of a second to the sample, with a pulse count ranging from five to fifty per square micrometer of surface.

Experiments have shown that under a small amount of pulse, three-dimensional nanostructures appear on the crystal surface, forming parallel convex stripe patterns. When 25-30 laser pulses are applied to silicon per square micrometer, the stripe pattern becomes a maze composed of irregularly shaped protrusions. Scientists believe that this effect is due to the heating and partial melting of materials under intensive laser processing, resulting in changes in surface structure.

"We have slightly changed the laser processing technology accepted by the scientific community: when the material is not in an air environment but in a liquid environment, that is, in methanol, we have achieved this. This makes it possible to prevent silicon oxidation, prevent any debris from entering the material surface, and form regular and dense nanostructures," said Sergei Shubayev, a junior researcher at the FAB RAS Institute for Automation and Control Processes, quoted by the Russian Science Foundation.

The author also discovered how the patterns on the crystal surface change according to the polarization of the laser beam, which reflects the direction of the electric and magnetic field vectors of light waves in space. For example, if the oscillation of the electric field vector occurs on a single plane, the laser can form parallel lines and spherical structures on the surface. When the electric field vector rotates in a plane perpendicular to the direction of light propagation, only spherical convex surfaces are formed on the crystal surface. Finally, when polarization changes, the oscillation of the electric field vector becomes perpendicular to the axis of the beam, and the laser beam takes on a donut shape: when it shines on the surface, nanostructures resembling wheat spikes appear.

The researchers evaluated the ability of the obtained samples to absorb light. They found that all patterns reflected light and lost no more than 5% of the light. In order to demonstrate in practice that laser processing makes monocrystalline silicon more sensitive to light than the original sample, the author designed a photodetector based on the material. The sensitivity of this device to infrared radiation is twice that of detectors using traditional silicon crystals.

Source: Laser Net

Recomendaciones relacionadas
  • Quantum droplets reveal a new field of macroscopic complexity

    Scientists have advanced this field by stabilizing exciton polaritons in semiconductor photonic gratings, achieving long-lived and optically configurable quantum fluids suitable for complex system simulations.Researchers from Leicester CNR Nanotec and the School of Physics at the University of Warsaw used a new generation of semiconductor photonic gratings to optically customize the composite of q...

    2024-03-28
    Ver traducción
  • Afinum Management acquires significant stakes in two laser companies

    Recently, Afinum Management, a private equity firm based in Munich, Germany, has acquired a large stake in two laser companies, with the intention of opening up new laser markets by combining the strengths of three parties.According to media reports, the two companies are ARC Laser in Germany and GNS neo Laser in Israel, and Afinum has agreed with the founders of the two companies that the acquisi...

    2024-08-08
    Ver traducción
  • Hamamatsu Photonics completes construction of new factory area

    Recently, Hamamatsu Photonics in Japan completed the construction of a new building at Miyakoda Manufacturing Co., Ltd. in Hamami ku, Hamamatsu City. The completion ceremony was held on July 29th, and the factory will start full production in November 2024, increasing overall production capacity by 2.5 times.Source: Hamamatsu PhotonicsIt is reported that Hamamatsu Photonics focuses on the developm...

    2024-08-01
    Ver traducción
  • Laser cladding method improves the surface performance of parts

    Laser cladding, also known as laser metal deposition, is a process of depositing one material onto another.When the laser beam scans the target surface, metal powder or wire flow is fed into the molten pool formed by the laser beam, thereby producing the required material coating.The laser cladding method improves the surface properties of the parts, such as wear resistance, and allows for the rep...

    2023-12-28
    Ver traducción
  • New laser technology can achieve more efficient facial recognition

    Recently, the latest research report from FLEET, an interdisciplinary research team in Australia, revealed a significant leap in laser technology, achieving unprecedented levels of spectral purity.Spectral purity, which refers to the degree of matching of a single light frequency (or color) generated by a laser, is an important indicator for measuring laser performance. By using a scanning Fabry P...

    2024-06-24
    Ver traducción