Español

The method of reducing the linewidth of laser beam by more than 10000 times

716
2025-07-28 12:00:37
Ver traducción

A project at Macquarie University has demonstrated a way to narrow the linewidth of a laser beam by a factor of over ten thousand.
Published in APL Photonics, the technique offers a promising route toward ultra-narrow linewidth lasers for potential use in a wide range of pump-pulse systems.

Laser linewidth measures how precisely a beam of light maintains its frequency and color purity, and narrow-linewidth lasers are increasingly valuable in applications such as precision sensing, spectroscopy, and quantum science.

 



Dampers at work: laser linewidth


But for these uses, control of the laser parameters is crucial. Existing ways of reducing the quantum noise properties of an input pulse include the use of Brillouin lasers, which force an interaction between the laser pulse and the vibrational excited states termed phonons. But this "phonon dephasing" can require relatively long timescales to achieve its noise reductions.

The team at Macquarie's Photonics Research Centre employed a different approach, and used stimulated Raman scattering.

"One current method to narrow laser linewidth uses Brillouin lasers, where sound waves interact with light; but the effect is relatively weak, typically narrowing by only tens to hundreds of times," commented Richard Mildren from the MQ Photonics Research Center.

"Our technique uses stimulated Raman scattering, where the laser stimulates much higher frequency vibrations in the material, and is thousands of times more effective at narrowing linewidth."

Diamond vibrations

Theory says that a Raman laser can have a dramatic damping effect, based around a complex three-wave interaction that counters inherent phase fluctuations in the laser spectrum.

The Macquarie team tested this principle using diamond crystals, which have exceptional thermal properties and provide a stable testing environment. In this architecture the Raman damping transfers the laser's random phase fluctuations into the diamond crystal as vibrations, where they are absorbed and dissipated in a few trillionths of a second.

Using a diamond crystal measuring a few millimeters across in a carefully designed cavity, the project tested this theory with a deliberately noisy input beam with linewidth exceeding 10 MHz. Results showed that the Raman scattering technique narrowed the output laser beam to the 1 kHz limit of their detection system, representing a reduction factor of more than 10,000, with further narrowing possible.

"Our computer modeling suggests we could narrow laser linewidth by more than 10 million times using variations of the current design," noted Macquarie's David Spence.

Improved spectral purity could enhance atomic clocks and gravitational wave detectors, as well as assisting the precise laser control needed in quantum computers, where phase noise inevitably introduces errors in the computations.

"We are essentially proposing a new technique for purifying the spectrum of lasers that can be applied to many different types of input lasers," commented Richard Mildren.

Source: optics.org

Recomendaciones relacionadas
  • Preparation of all silicon dielectric metasurface by femtosecond laser modification combined with wet etching, achieving ideal compatibility with complementary metal oxide semiconductor technology

    The fully dielectric element surface has the characteristics of low material loss and strong field localization, making it very suitable for manipulating electromagnetic waves at the nanoscale. Especially the surface of all silicon dielectric elements can achieve ideal compatibility with complementary metal oxide semiconductor technology, making it an ideal choice for large-scale monolithic integr...

    2023-10-23
    Ver traducción
  • Amada launches latest precision laser welding workstation wl-300a

    Recently, Amada weld tech Inc., a Japanese supplier of welding and cutting solutions, grandly launched a new wl-300a precision laser welding workstation, which is equipped with advanced continuous wave (CW) or quasi continuous wave (QCW) fiber lasers. It has a wide range of applications, especially for metal welding and processing of selected plastic materials, especially in the aerospace field.Wl...

    2024-05-31
    Ver traducción
  • ABB will add optical sensors to four greenhouse gas monitoring satellites

    ABB has signed a third contract with the global leader in high-resolution space greenhouse gas monitoring, GHGSat, to manufacture optical sensors for its C12, C13, C14, and C15 satellites. It is reported that C12, C13, C14, and C15 satellites are scheduled to be launched into orbit in 2024.These new satellites will join GHGSat's expanding constellation for detecting and quantifying industrial gas ...

    2023-12-06
    Ver traducción
  • Laser based deformation may lead to self optimized aircraft wings

    Due to advances in materials science by Stockholm researchers, changing the shape during flight to better handle airflow passing through its aircraft wings may be imminent. The trick involves the melting and drilling capabilities of lasers.Researchers from KTH Royal Institute of Technology in Stockholm, Sweden conducted experiments on paraffin. Using the 2D version of the material, they were able ...

    2024-01-18
    Ver traducción
  • Narrow band tunable terahertz lasers may change material research and technology

    A group of researchers from the Max Planck Institute for Material Structure and Dynamics in Germany explored the effect of manipulating the properties of quantum materials far from equilibrium through customized laser drivers. They found a more effective method to create previously observed metastable superconducting states in fullerene based materials using lasers.By tuning the light source to 10...

    2023-11-21
    Ver traducción