Español

Optical properties of Xinggory Cy3.5 amine/NH2 labeling experiment

553
2024-03-29 15:03:26
Ver traducción

The optical properties of the Cy3.5 amine labeling experiment are an important reason for its application in biomarkers and fluorescence imaging. Cy3.5 is a fluorescent dye belonging to the Cyanine dye family, with high molar extinction coefficient and quantum yield, making it excellent in trace analysis and fluorescence imaging.

In the Cy3.5 amine labeling experiment, the dye covalently binds to specific functional groups on biomolecules (such as proteins, nucleic acids, etc.) through its amine group, thereby achieving the labeling of the target molecule. This labeling not only maintains the biological activity of the target molecule, but also endows it with fluorescence characteristics, making it convenient for qualitative and quantitative analysis in complex biological samples.

The maximum excitation wavelength of Cy3.5 dye is usually in the range of 550-570nm, while the maximum emission wavelength is in the range of 570-590nm. This gives Cy3.5 dye unique emission characteristics between green and red fluorescence, enabling good spectral separation from other commonly used fluorescent dyes such as GFP, FITC, etc., avoiding signal interference.

In addition to fluorescent signals with high sensitivity and specificity, Cy3.5 dyes also exhibit good photostability. Under continuous laser irradiation, its fluorescence signal can remain relatively stable and is not prone to bleaching or quenching. This makes Cy3.5 dye have better application prospects in long-term fluorescence imaging experiments.

In summary, the optical properties of the Cy3.5 amine labeling experiment make it a tool in the fields of biomarkers and fluorescence imaging. Its high sensitivity, specificity, good spectral separation, and excellent photostability make this dye valuable in biomedical research.

Source: Sohu

Recomendaciones relacionadas
  • FGI utilizes Fraunhofer's LiDAR technology for maritime surveying

    The highly respected Finnish Institute of Geospatial Studies will utilize the advanced LiDAR system developed by the Fraunhofer Institute of Physical Measurement Technology for future ocean surface surveys. Significant progress is expected in data quality and on-site measurement efficiency, and the state-owned research department is collaborating with Fraunhofer IPM on a joint project. They are jo...

    2024-02-14
    Ver traducción
  • Yang Xueming from Shenzhen has been elected as a Foreign Fellow of the Royal Society of England

    On May 20th, the Royal Society announced on its official website that over 90 scientists who have made outstanding contributions to scientific research have been newly elected as Fellow of The Royal Society (FRS). Yang Xueming, an academician of the CAS Member and chief director of the Shenzhen Free Electron Laser Device, was newly elected as a foreign academician of the Royal Society of England.A...

    05-26
    Ver traducción
  • New method doubles and accelerates thermal tuning of optical chips, supporting two current and voltage regulation methods

    Silicon based quantum chip technology is one of the hot research directions in the field of integrated photonics. Thanks to compatibility with CMOS technology and silicon material characteristics, silicon-based integrated optical chips and devices have many advantages such as low cost, small size, low power consumption, and high integration, providing an ideal platform for large-scale optical comp...

    2024-04-02
    Ver traducción
  • Professor Wu Dong's team at the University of Science and Technology of China created a "dancing microrobot" using femtosecond laser composite materials.

    It was learned from the University of Science and Technology of China that the team of Professor Wu Dong of the Micro and Nano Engineering Laboratory of the school proposed a femtosecond laser two-in-one multi-material processing strategy, manufactured a micromechanical joint composed of temperature-sensitive hydrogel and metal nanoparticles, and then developed a multi-joint humanoid micromachine ...

    2023-08-11
    Ver traducción
  • Laser assisted detection of past climate in ice cores

    Around the poles, ice accumulated over millions of years can reach depths of several kilometers. The undisturbed deep ice preserves information about the past. The air bags and particles trapped in the ice tell scientists what the atmosphere used to be like. This has aroused great interest among paleoclimatologists in glacier ice cores.By regularly sampling the ice core at its depth, they can reco...

    2023-11-01
    Ver traducción