Español

Laser blasting promises to solve global plastic problem

211
2024-07-16 14:30:55
Ver traducción

Recently, researchers announced the development of a way to use laser blasting to break down plastic and other material molecules into their smallest parts for future reuse.

This method involves placing these materials on a two-dimensional material called transition metal dichalcogenides and then irradiating them with light.

This discovery has the potential to improve the way we handle plastics that are currently difficult to decompose. The relevant research results have been published in the journal Nature Communications.

By utilizing these unique reactions, we can explore new ways to convert environmental pollutants into valuable reusable chemicals, thereby promoting the development of a more sustainable and circular economy, "said Yuebing Zheng, a professor in the Walker Department of Mechanical Engineering at the Cockrell School of Engineering at the University of Texas at Austin and one of the project leaders." This discovery is of great significance for addressing environmental challenges and advancing the field of green chemistry.

Plastic pollution has become a global environmental crisis, with millions of tons of plastic waste accumulating in landfills and oceans every year. Traditional plastic degradation methods often have high energy consumption, are harmful to the environment, and have poor results. Researchers envision using this new discovery to develop efficient plastic recycling technologies to reduce pollution.

Researchers use low-power light to break the chemical bonds of plastics and create new chemical bonds, transforming the material into luminescent carbon dots. Due to the diverse capabilities of carbon based nanomaterials, there is a high demand for these carbon dots, which may be used as storage devices in the next generation of computer equipment.

Transforming plastics that can never be degraded into materials useful for many different industries is exciting, "said Jingang Li, a postdoctoral student at the University of California, Berkeley who started this research at the University of Texas at Austin.

The specific reaction he mentioned is called "C-H activation", which selectively breaks the carbon hydrogen bonds in organic molecules and converts them into new chemical bonds. In this study, two-dimensional materials catalyzed this reaction, turning hydrogen molecules into gas and allowing carbon molecules to combine with each other to form carbon dots for storing information.

Further research and development are needed to optimize this photo driven C-H activation process and scale it up for industrial applications. However, this study represents significant progress in finding sustainable solutions for plastic waste management.

The photo driven C-H activation process demonstrated in this study can be applied to many long-chain organic compounds, including polyethylene and surfactants commonly used in nanomaterial systems.

Other co authors come from the University of Texas at Austin, Northeastern University in Japan, University of California, Berkeley, Lawrence Berkeley National Laboratory, Baylor University, and Pennsylvania State University.

This work has received funding from the National Institutes of Health, National Science Foundation, Japan Association for the Advancement of Science, Hirose Foundation, and National Natural Science Foundation of China.

Source: OFweek

Recomendaciones relacionadas
  • Massachusetts University team achieves new breakthrough in photolithography chip

    Recently, a research team from the University of Massachusetts Amherst has pioneered a new technology that uses laser irradiation on concentric superlenses on chips to generate holograms, thereby achieving precise alignment of 3D semiconductor chips.This research result, published in the journal Nature Communications, is expected to not only reduce the production cost of 2D semiconductor chips, bu...

    2024-11-06
    Ver traducción
  • BLT launches a new BLT-S800 metal PBF 3D printer equipped with 20 lasers

    Bright Laser Technologies (BLT), a global leader in additive manufacturing headquartered in China, has launched a new BLT-S800 metal 3D printer with a super large construction volume (800 mm x 800 mm x 600 mm) and a 20 fiber laser configuration, which can shorten part delivery time and achieve rapid customer manufacturing.The BLT-S800 system supports titanium alloy, aluminum alloy, high-temperatur...

    2023-10-19
    Ver traducción
  • Overview of Residual Stress in Metal Additive Manufacturing: Detection Techniques, Numerical Simulation, and Mitigation Strategies

    Researchers from Shantou University have reported a review of residual stresses in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies. The relevant paper titled "A comprehensive review of residual stress in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies" was published in the Journal of the Brazi...

    2024-12-20
    Ver traducción
  • Researchers at Georgia Institute of Technology have developed cost-effective nanoscale printing

    A team of researchers from Georgia Institute of Technology has developed a scalable printing system for metal nanostructures using a new technology called superluminescent light projection. The inventor of this technology Dr. Sourabh Saha and Jungho Choi submitted a patent application for nanoscale printing.Nowadays, the cost of existing nanoscale printing technologies hinders their widespread use...

    2024-02-19
    Ver traducción
  • Researchers have created the first organic semiconductor laser that can be operated without the need for a separate light source

    Researchers at the University of St. Andrews in Scotland have manufactured the first organic semiconductor laser to operate without the need for a separate light source - which has proven to be extremely challenging. The new all electric driven laser is more compact than previous devices and operates in the visible light region of the electromagnetic spectrum. Therefore, its developers stated that...

    2023-11-15
    Ver traducción