Español

DataLase launches a new laser active transparent to white coating

401
2024-03-09 14:31:49
Ver traducción

Laser coding and marking technology expert DataLase has launched a series of new colorless to white coatings for a range of packaging applications.

These coatings are centered around biodegradable and sustainably sourced raw materials, providing high contrast white printing even on difficult substrates such as 12 micron PET and shrink film, under the weight of flexographic and gravure coatings. This series includes transfer printing coatings for directly marking the shape of objects, such as bottles and bottle caps.

This multifunctional coating can also be used for folding paper boxes, flexible films, foils, small bags, and labels. High opacity, clear laser printing quality, and QR code readability can be achieved on a range of lasers, providing CO2, fiber, and UV lasers.

Compared to laser ablation, these coatings can eliminate ink debris, odors, and exhaust gases, making them suitable for sterile packaging. They also extend the lifespan of common filters and extraction equipment in printing lines. In addition, compared to laser ablation, coatings allow for faster laser imaging, thereby increasing production yield and extending laser lifespan at lower laser power.

Uniquely, these coatings provide white markings through a metal free natural alternative, with titanium dioxide commonly used in traditional and digital inks. This sustainable chemical composition and the resulting coatings are widely protected by exclusive patents held by DataLase. This comprehensive patent protection ensures a high degree of assurance in the supply chain.

Ally Grant, Chief Technology Officer of DataLase, stated, "Based on the high expectations set by our market leading paint and pigment technology, our innovative transparent to white coatings aim to reduce consumables and waste in the production environment. They not only increase production and productivity, but also have wear and friction resistance, thereby minimizing the need for potential rework and further waste.".

These coatings have a wide range of uses and are sufficient to meet product coding applications in various industries, including food and beverage, home and personal care, pharmaceuticals, and healthcare. They are compatible with a variety of substrates such as film materials, paper, and plastics, making them ideal for use in small bags, laminates, and bottles.

Source: Laser Net

Recomendaciones relacionadas
  • Researchers propose NeuFlow: an efficient optical flow architecture that can solve high-precision and computational cost issues

    Real time and high-precision optical flow estimation is crucial for analyzing dynamic scenes in computer vision. Although traditional methods are fundamental, they often encounter issues with computation and accuracy, especially when executed on edge devices. The emergence of deep learning has driven the development of this field, providing higher accuracy, but at the cost of sacrificing computati...

    2024-03-23
    Ver traducción
  • Changing Optical Design: How Multi scale Simulation Improves the Efficiency of Modern Devices

    Optical equipment is an integral part of technologies such as data centers and autonomous vehicle, which are constantly developing to meet the needs of complex applications. The challenge faced by designers is to manipulate light at the wavelength scale to achieve the required optical properties, which requires precision at both the nano and macro scales. Nanoscale structures, such as those on LED...

    2024-03-02
    Ver traducción
  • On demand ultra short laser flash: controllable optical pulse pairs from a single fiber laser

    Set up a dual comb fiber laser oscillator, external pulse combination, and real-time detection.In innovative methods for controlling ultra short laser flashes, researchers from Bayreuth University and Konstanz University are using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse inter...

    2024-01-12
    Ver traducción
  • Cambridge scientists have achieved the long-sought quantum state stability in new 2D materials

    Scientists at the Cavendish laboratory have discovered the spin coherence of hexagonal boron nitride (hBN) under normal conditions, providing new prospects for the application of quantum technology.Researchers at Cavendish Laboratory have found that a single "atomic defect" in a material called hexagonal boron nitride (hBN) maintains spin coherence at room temperature and can be manipulated using ...

    2024-05-27
    Ver traducción
  • Researchers are studying lasers for controlling magnetic ripple interactions

    One vision for computing the future is to use ripples in magnetic fields as the fundamental mechanism. In this application, magnetic oscillators can be comparable to electricity and serve as the foundation of electronic products.In traditional digital technology, this magnetic system is expected to be much faster than today's technology, from laptops and smartphones to telecommunications. In quant...

    2024-02-11
    Ver traducción