Español

QBeam launches innovative window ablation laser system to achieve free space optical communication

220
2024-02-15 11:40:33
Ver traducción

QBeam is a leader in developing breakthrough optical products and announced today that its handheld laser ablation equipment is fully launched for free space optical communication in indoor office locations. The qBeam window ablation laser allows for the installation of optical communication terminals indoors by treating windows that otherwise block the infrared beams of the terminals.

Commercial buildings use energy-saving windows to reduce the operating costs of HVAC systems. These windows include low radiation coatings that can block infrared wavelengths, thereby limiting the escape of heat to the outside. Unfortunately, the Low-E coating also excludes the possibility of operating optical communication equipment indoors.

The handheld device of qBeam uses a laser beam to form a small "opening" on the Low-E coating, allowing infrared energy to pass through with minimal attenuation. This has led to significant improvements in the transmission of free space optical communication.

The portable laser system includes a variable depth of focus function to accommodate most commercial windows and can create approximately 4 inches x 4 inches of "openings" without repositioning the device. Larger openings require multiple applications. This process is permanent and can be applied within a few minutes.

The window ablation laser equipment supplements qBeam's existing FSOC modem product line by being installed in more locations. The qBeam FSOC modem released in 2023 provides a low-cost fiber optic solution alternative for ground networks when paired with compatible optical terminals. In the past, free space optical devices were unable to obtain traction because traditional FSOC modems did not fully consider the impact of atmospheric turbulence.

The working mode of qBeam FSOC modems is different. It includes forward error correction function and fade out mode, which can provide end-to-end protection for transmitted data. Therefore, compared to traditional systems, qBeam FSOC modems support longer ranges and higher data rates, providing unparalleled stability, reliability, and performance.

The plug and play qBeam FSOC modem can seamlessly integrate with existing optical terminals to quickly provide these and other advantages to existing infrastructure. It is suitable for traditional Gigabit Ethernet networks and supports GigE and 2.5 GigE client connections through standard RJ-45 or SFP+interfaces. QBeam is actively seeking relationships with optical terminal manufacturers to enable customers to easily and quickly deploy more comprehensive FSOC solutions. QBeam plans to release optical terminals by the end of 2024.

"For a long time, optical communication has been impacted by untapped potential, posing various unsatisfactory choices for governments and commercial entities to best support their ground and ground to air communication needs," he said, referring to Eugene Ishinto, President and CEO of qBeam. "Our innovative FSOC modem and window ablation system unleashes this potential through eye-catching and easy-to-use products that can immediately provide value to our customers and change the landscape."

QBeam was founded in 2014 and is headquartered in Lisburg, Virginia. It is dedicated to developing optical/laser products as well as simulation and modeling software for communication links. The company designs and manufactures innovative free space optical modems, multispectral infrared cameras, laser etching/ablation systems, and optical ranging simulators. It also developed an Embed/Comm physical layer communication simulation software plugin.

Source: Laser Net

Recomendaciones relacionadas
  • Stable lasers developed with mixed materials focus on autonomous vehicle, etc

    Researchers printed microscale lenses directly onto optical fibers, allowing them to tightly combine the fibers and laser crystals into a single laser oscillator.Scientists have used 3D printing polymers in new micro optical technology, which can reduce the size of lasers and be used in various new applications, including the laser radar system for autonomous vehicle technology and cancer treatmen...

    2024-01-22
    Ver traducción
  • Progress in Research on Transparent Ceramics for 3D Printing Laser Illumination at Shanghai Institute of Optics and Mechanics

    It is reported that the Research Center for Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research of additive manufacturing (3D printing) transparent ceramics for laser illumination.Recently, the Research Center for Infrared Optical Materials of the Shanghai Institute of Optics and Precision Mechanics, Chines...

    2023-10-17
    Ver traducción
  • Beijing Institute of Technology has made significant progress in the study of ultrafast carrier dynamics in optoelectronic functional crystals

    Recently, teachers and students from the Institute of Solid State Laser and Ultrafast Photonics at the School of Physics and Optoelectronic Engineering have made significant progress in the study of ultrafast carrier dynamics in optoelectronic functional crystals. The related research results are titled "Anisotropic carrier dynamics and laser fabricated luminosity patterns on oriented single cryst...

    2024-02-21
    Ver traducción
  • The construction of Hefei Advanced Light Source Project held a launch ceremony, expected to be completed and released in 5 years

    Recently, in the Future Science City of Hefei City, Anhui Province, the National Major Science and Technology Infrastructure Project and Supporting Projects of Hefei Advanced Light Source announced the start of construction, with a planned land area of approximately 656 acres. The first phase of the project is expected to be completed by September 2028.After completion, it will become an internati...

    2023-09-23
    Ver traducción
  • Amplitude's 2024 performance shows steady growth

    In 2024, Amplitude's performance will continue to maintain steady growth, thanks to our continuous innovation in femtosecond laser technology and deep market expansion The application performance of high-power femtosecond lasers in precision microfabrication and industrial manufacturing such as semiconductors is particularly impressive, "said Ruan Xia, Sales Director of Amplitude Laser Solutions D...

    02-17
    Ver traducción